Publications by authors named "Alexander Schubert"

Detecting genetic variants enables risk factor identification, disease screening, and initiation of preventative therapeutics. However, current methods, relying on hybridization or sequencing, are unsuitable for point-of-care settings. In contrast, CRISPR-based-diagnostics offer high sensitivity and specificity for point-of-care applications.

View Article and Find Full Text PDF

Medical treatments often involve a sequence of decisions, each informed by previous outcomes. This process closely aligns with reinforcement learning (RL), a framework for optimizing sequential decisions to maximize cumulative rewards under unknown dynamics. While RL shows promise for creating data-driven treatment plans, its application in medical contexts is challenging due to the frequent need to use sparse rewards, primarily defined based on mortality outcomes.

View Article and Find Full Text PDF

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation.

View Article and Find Full Text PDF

Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings.

View Article and Find Full Text PDF

The electronic transition rates and pathways underlying interfacial charge separation in tetraphenyldibenzoperiflanthene:fullerene (DBP:C) blends are investigated computationally. The analysis is based on a polarization-consistent framework employing screened range-separated hybrid functional in a polarizable continuum model to parametrize Fermi's golden rule rate theory. The model considers the possible transitions within the 25 lowest excited states of a DBP:C dyad that are accessible by photoexcitation.

View Article and Find Full Text PDF

CRISPR-based diagnostics enable specific sensing of DNA and RNA biomarkers associated with human diseases. This is achieved through the binding of guide RNAs to a complementary sequence that activates Cas enzymes to cleave reporter molecules. Currently, most CRISPR-based diagnostics rely on target preamplification to reach sufficient sensitivity for clinical applications.

View Article and Find Full Text PDF

Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin. Structural analysis of PINK1 from diverse insect species with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated.

View Article and Find Full Text PDF
Article Synopsis
  • Cu(I) 4-imidazolato complexes are promising photosensitizers for artificial photosynthesis due to their strong light absorption and reliance on an earth-abundant metal.
  • The study investigates the excited-state dynamics of three novel Cu(I) complexes through advanced spectroscopy techniques, revealing fast intersystem crossing and structural changes upon light excitation.
  • The photophysical behaviors are influenced by the side groups on the ligands and the type of excitation wavelength, leading to distinct relaxation pathways in the excited singlet states.
View Article and Find Full Text PDF

The pore-forming protein gasdermin D (GSDMD) executes lytic cell death called pyroptosis to eliminate the replicative niche of intracellular pathogens. Evolution favors pathogens that circumvent this host defense mechanism. Here, we show that the Shigella ubiquitin ligase IpaH7.

View Article and Find Full Text PDF

Background And Purpose: Aneurysmal subarachnoid hemorrhage is a devastating disease leaving surviving patients often severely disabled. Delayed cerebral ischemia (DCI) has been identified as one of the main contributors to poor clinical outcome after subarachnoid hemorrhage. The objective of this review is to summarize existing clinical evidence assessing the diagnostic value of invasive neuromonitoring (INM) in detecting DCI and provide an update of evidence since the 2014 consensus statement on multimodality monitoring in neurocritical care.

View Article and Find Full Text PDF

The generalized quantum master equation (GQME) provides a general and formally exact framework for simulating the reduced dynamics of open quantum systems. The recently introduced modified approach to the GQME (M-GQME) corresponds to a specific implementation of the GQME that is geared toward simulating the dynamics of the electronic reduced density matrix in systems governed by an excitonic Hamiltonian. Such a Hamiltonian, which is often used for describing energy and charge transfer dynamics in complex molecular systems, is given in terms of diabatic electronic states that are coupled to each other and correspond to different nuclear Hamiltonians.

View Article and Find Full Text PDF

The potential role of cyanide-bridged platinum-iron complexes as an anti-cancer Pt(IV) prodrug is studied. We present design principles of a dual-function prodrug that can upon reduction dissociate and release concurrently six cisplatin units and a ferricyanide anion per prodrug unit. The prodrug molecule is a unique complex of hepta metal centers consisting of a ferricyanide core with six Pt(IV) centers each bonded to the Fe(III) core through a cyano ligand.

View Article and Find Full Text PDF

Mutations in the death receptor FAS or its ligand FASL cause autoimmune lymphoproliferative syndrome, whereas mutations in caspase-8 or its adaptor FADD-which mediate cell death downstream of FAS and FASL-cause severe immunodeficiency in addition to autoimmune lymphoproliferative syndrome. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses, but the mechanisms that underlie immunodeficiency remain undefined. Here we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8.

View Article and Find Full Text PDF

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans.

View Article and Find Full Text PDF

The special pair, a bacteriochlorophyll a (BChl) dimer found at the core of bacterial reaction centers, is known to play a key role in the functionality of photosystems as a precursor to the photosynthesis process. In this paper, we analyze the inherent affinity of the special pair to rectify the intrapair photo-induced charge transfer (CT). In particular, we show that the molecular environment affects the nuclear geometry, resulting in symmetry breaking between the two possible intrapair CT processes.

View Article and Find Full Text PDF

Efficient organic photovoltaics (OPVs) require broadband charge photogeneration with near-unity quantum yield. This can only be achieved by exploiting all pathways that generate charge. Electron transfer from organic donors to acceptors has been well-studied and is considered the primary path to charge photogeneration in OPVs.

View Article and Find Full Text PDF

Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes.

View Article and Find Full Text PDF

Spectral peaks of the special pair (P) and adjacent pigments in the bacterial reaction center (BRC) are investigated computationally. We employ a novel framework based on a polarization-consistent treatment of the dielectric environment, combining the polarizable continuum model (PCM) with time-dependent screened range-separated hybrid (SRSH) density functional theory. Our calculations quantitatively reproduce recently measured spectral peak splits between P excitonic states and spectral asymmetries within the pairs of excited states of the adjacent bacteriochlorophyll (BChl) and bacteriopheophytin (BPhe) pigments.

View Article and Find Full Text PDF

Marine habitats are nowadays strongly affected by human activities, while for many species the consequences of these impacts are still unclear. The red-throated diver (Gavia stellata) has been reported to be sensitive to ship traffic and other anthropogenic pressures and is consequently of high conservation concern. We studied red-throated divers in the German Bight (North Sea) using satellite telemetry and digital aerial surveys with the aim of assessing effects of ship traffic on the distribution and movements of this species during the non-breeding season.

View Article and Find Full Text PDF

The generalized quantum master equation (GQME) provides a powerful framework for simulating electronically nonadiabatic molecular dynamics. Within this framework, the effect of the nuclear degrees of freedom on the time evolution of the electronic reduced density matrix is fully captured by a memory kernel superoperator. In this paper, we consider two different procedures for calculating the memory kernel of the GQME from projection-free inputs obtained via the combination of the mapping Hamiltonian (MH) approach and the linearized semiclassical (LSC) approximation.

View Article and Find Full Text PDF

Objective: To assess the impact of non-endodontic factors like periodontitis and chronic disease medication (CDM) mostly affecting elderly people's health on the outcome of non-surgical root canal treatment (NSRCT).

Background: An increasing number of elderly people with high prevalence of marginal periodontitis and CDM benefit from adequate endodontic therapy, if irreversible pulpitis or apical periodontitis occurs. Only few data exist about the relevance of those non-endodontic factors on healing of endodontic lesions in a population 60 years or more.

View Article and Find Full Text PDF

This study investigated the use of cone-beam computed tomography (CBCT) by endodontists in Germany and Switzerland. Sixty-eight German endodontic specialists (G-ES), 22 Swiss endodontic specialists (CH-ES) and 95 dentists with a German Master of Science in endodontics (MSc) were invited to participate. Data on the timing of diagnostic assessments, endodontic case difficulty and indications for CBCT use were collected by questionnaire.

View Article and Find Full Text PDF

We present a modified approach for simulating electronically nonadiabatic dynamics based on the Nakajima-Zwanzig generalized quantum master equation (GQME). The modified approach utilizes the fact that the Nakajima-Zwanzig formalism does not require casting the overall Hamiltonian in system-bath form, which is arguably neither natural nor convenient in the case of the Hamiltonian that governs nonadiabatic dynamics. Within the modified approach, the effect of the nuclear degrees of freedom on the time evolution of the electronic reduced density operator is fully captured by a memory kernel super-operator.

View Article and Find Full Text PDF