Front Sports Act Living
June 2024
This study employs Bayesian methodologies to explore the influence of player or positional factors in predicting the probability of a shot resulting in a goal, measured by the expected goals (xG) metric. Utilising publicly available data from StatsBomb, Bayesian hierarchical logistic regressions are constructed, analysing approximately 10,000 shots from the English Premier League (for the years of 2003 and 2015) to ascertain whether positional or player-level effects impact xG. The findings reveal positional effects in a basic model that includes only distance to goal and shot angle as predictors, highlighting that strikers and attacking midfielders exhibit a higher likelihood of scoring.
View Article and Find Full Text PDF