Machine learning-based gait systems facilitate the real-time control of gait assistive technologies in neurological conditions. Improving such systems needs the identification of kinematic signals from inertial measurement unit wearables (IMUs) that are robust across different walking conditions without extensive data processing. We quantify changes in two kinematic signals, acceleration and angular velocity, from IMUs worn on the frontal plane of bilateral shanks and thighs in 30 adolescents (8-18 years) on a treadmills and outdoor overground walking at three different speeds (self-selected, slow, and fast).
View Article and Find Full Text PDF