Publications by authors named "Alexander S Wisner"

Zebrafish have become a key model organism in neuroscience research because of their unique advantages. Their genetic, anatomical, and physiological similarities to humans, coupled with their rapid development and transparent embryos, make them an excellent tool for investigating various aspects of neurobiology. They have specifically emerged as a valuable and versatile model organism in biomedical research, including the study of neurological disorders such as multiple sclerosis.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish.

View Article and Find Full Text PDF

Synthetic cathinones are drugs of abuse substituted for amphetamine-like stimulant drugs such as methamphetamine. In this study, methamphetamine was studied as a prototypical amphetamine-like drug as a first step toward establishing methods to study this entire drug class. The internal concentration of methamphetamine in zebrafish larvae was determined using matrix-matched calibration along with extraction and purification of samples using the quick, easy, cheap, effective, rugged, and safe technique in liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Zebrafish () have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices.

View Article and Find Full Text PDF

Rationale: The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches.

View Article and Find Full Text PDF