The paper presents an original approach to time-domain reflectance fluorescence molecular tomography (FMT) of small animals. It is based on the use of early arriving photons and state-of-the-art compressed-sensing-like reconstruction algorithms and aims to improve the spatial resolution of fluorescent images. We deduce the fundamental equation that models the imaging operator and derive analytical representations for the sensitivity functions which are responsible for the reconstruction of the fluorophore absorption coefficient.
View Article and Find Full Text PDF