Publications by authors named "Alexander S Lundervold"

Background: Loss of autonomy in day-to-day functioning is one of the feared outcomes of Alzheimer's disease (AD), and relatives may have been worried by subtle behavioral changes in ordinary life situations long before these changes are given medical attention. In the present study, we ask if such subtle changes should be given weight as an early predictor of a future AD diagnosis.

Methods: Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to define a group of adults with a mild cognitive impairment (MCI) diagnosis remaining stable across several visits (sMCI, n=360; 55-91 years at baseline), and a group of adults who over time converted from having an MCI diagnosis to an AD diagnosis (cAD, n=320; 55-88 years at baseline).

View Article and Find Full Text PDF

Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer's disease (AD). Early identification of underlying neurodegenerative processes is essential to provide treatment before the disease is well established in the brain. Here we used longitudinal data from the ADNI database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI at a baseline examination.

View Article and Find Full Text PDF

Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide. Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treatment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible in the clinic.

View Article and Find Full Text PDF

We present a framework for constructing predictive models of cognitive decline from longitudinal MRI examinations, based on mixed effects models and machine learning. We apply the framework to detect conversion from cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to Alzheimer's disease (AD), using a large collection of subjects sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). We extract subcortical segmentation and cortical parcellation from corresponding T1-weighted images using FreeSurfer v.

View Article and Find Full Text PDF

The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer's disease (AD), and identification and treatment before further decline is an important clinical task. We selected longitudinal data from the ADNI database to investigate how well normal function (HC, n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs.

View Article and Find Full Text PDF

Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume.

View Article and Find Full Text PDF

In laboratory studies, imposed sleep restriction consistently reduces cognitive performance. However, the association between objectively measured, free-living sleep and cognitive function has not been studied in older adolescents. To address this gap, we measured one week of sleep with a wrist-worn GT3X+ actigraph in 160 adolescents (96 girls, 17.

View Article and Find Full Text PDF

What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry.

View Article and Find Full Text PDF