Publications by authors named "Alexander S Liberson"

A profound analysis of pressure and flow wave propagation in cardiovascular systems is the key in noninvasive assessment of hemodynamic parameters. Pulse transit time (PTT), which closely relates to the physical properties of the cardiovascular system, can be linked to variations of blood pressure and stroke volume to provide information for patient-specific clinical diagnostics. In this work, we present mathematical and numerical tools, capable of accurately predicting the PTT, local pulse wave velocity, vessel compliance, and pressure/flow waveforms, in a viscous hyperelastic cardiovascular network.

View Article and Find Full Text PDF

Reduced fluid-structure interaction models are the key component of hemodynamic simulation. In this work, a multi-purpose computational model applicable to specific physiological components such as arterial, venous and cerebrospinal fluid circulatory systems has been developed based on the Hamilton's variational principle. This model encompasses a viscous Newtonian fluid structure interaction (FSI) framework for the large compliant bifurcated arterial networks and its subsystems.

View Article and Find Full Text PDF

Purpose: The current 1-dimensional fluid structure interaction model (FSI) for understanding cerebrospinal fluid (CSF) circulation requires pulsatility as a precondition and has not been applied to patients with continuous-flow left ventricular assist devices (CF-LVAD) where pulsatility is chronically reduced. Our study aims to characterize the behavior of CSF pressure and flow in patients with CF-LVADs using a computational FSI model.

Methods: Utilizing the computational FSI model, CSF production in choroid plexuses of the 4 ventricles was specified as a boundary condition for the model.

View Article and Find Full Text PDF

Pulse wave velocity (PWV) quantification commonly serves as a highly robust prognostic parameter being used in a preventative cardiovascular therapy. Being dependent on arterial elastance, it can serve as a marker of cardiovascular risk. Since it is influenced by a blood pressure (BP), the pertaining theory can lay the foundation in developing a technique for noninvasive blood pressure measurement.

View Article and Find Full Text PDF

Hypertension is a significant worldwide health issue. Continuous blood pressure monitoring is important for early detection of hypertension, and for improving treatment efficacy and compliance. Pulse wave velocity (PWV) has the potential to allow for a continuous blood pressure monitoring device; however published studies demonstrate significant variability in this correlation.

View Article and Find Full Text PDF

Pressure wave velocity (PWV) is commonly used as a clinical marker of vascular elasticity. Recent studies have increased clinical interest in also analyzing the impact of heart rate, blood pressure, and left ventricular ejection time on PWV. In this article we focus on the development of a theoretical one-dimensional model and validation via direct measurement of the impact of ejection time and peak pressure on PWV using an in vitro hemodynamic simulator.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1vepmv240r4j4mgb28fmovn58aannr6b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once