Publications by authors named "Alexander S Dubovik"

Interaction of bovine β-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration.

View Article and Find Full Text PDF

Energetics of chitosan (CS) polyplexes and conformational stability of bound DNA were studied at pH 5.0 by ITC and HS-DSC, respectively. The CS-DNA binding isotherm was well approximated by the McGhee-von Hippel model suggesting the binding mechanism to be a cooperative attachment of interacting CS ligands to the DNA matrix.

View Article and Find Full Text PDF

In this work, we studied the photocatalytic activity of photosensitizers (PSs) of various natures solubilized with polyvinylpyrrolidone (PVP) and ternary block copolymer ethylene and propylene oxide Pluronic F127 (F127) in a model reaction of tryptophan photo-oxidation in water in the presence of chitosan (CT). Water-soluble compounds (dimegin and trisodium salt of chlorin e6 (Ce6)) and hydrophobic porphyrins (tetraphenylporphyrin (TPP) and its fluorine derivative (TPPF20)) were used as PSs. It was shown that the use of chitosan (Mw ~100 kDa) makes it possible to obtain a system whose activity is comparable to that of the photosensitizer-amphiphilic polymer systems.

View Article and Find Full Text PDF

Oligochitosan, a low molecular weight derivative of the cationic biopolymer, chitosan, currently shows a great potential of application as a biodegradable non-toxic stimuli-sensitive drug carrier. This paper aimed to elucidate the thermoresponsive potential of oligochitosan and the temperature-controlled drug binding and release to shed light on oligochitosan potential in stimuli-responsive drug delivery. Mechanisms of thermoresponsive behavior of oligochitosan induced by β-glycerophosphate (GP) were investigated using ITC, DSC, and DLS.

View Article and Find Full Text PDF

Urea (URE) and guanidine hydrochloride (GHC) possessing strong chaotropic properties in aqueous media were added to DMSO solutions of poly(vinyl alcohol) (PVA) to be gelled via freeze⁻thaw processing. Unexpectedly, it turned out that in the case of the PVA cryotropic gel formation in DMSO medium, the URE and GHC additives caused the opposite effects to those observed in water, i.e.

View Article and Find Full Text PDF

Biodegradable hydrogels of cross-linked polymethoxyethylaminophosphazenes (PMOEAPs) of various cross-linking density and apparent subchain hydrophobicity were investigated by high-sensitivity differential scanning calorimetry and equilibrium swelling measurements. The volume phase transition of the hydrogels was found to be induced by salts of weak polybasic acids. The transition parameters were determined depending on the pH, phosphate concentration, cross-linking density, and apparent hydrophobicity of the gels.

View Article and Find Full Text PDF

The phosphorus-containing glycerolipid based antitumor drugs (edelfosine as a prototype) are currently in clinical trials. To avoid the use of potentially harmful phosphoric reagents in the preparation of biologically active glycerolipids, and to obtain the compounds without the phosphoester bond cleavable inside the cells, we developed the synthesis of non-phosphorous glycerolipids (NPGLs) with neutral or cationic polar 'heads'. In this study, we analyzed the ability of novel NPGLs L1-L5 to interact with duplex DNA and interfere with the DNA modifying enzyme topoisomerase I (topo I).

View Article and Find Full Text PDF

Controlled drug binding and release stand among top requirements postulated for targeted drug delivery systems of the new generations. "Smart" polymers and gels are highly suitable for the controlled delivery due to their structural sensitivity to minor environmental variations. The aim of this work was to study thermoresponsive polyanionic and polycationic hydrogels of N-isopropylacrylamide copolymers with acrylic acid and N-aminopropylmethacrylamide in terms of their interaction with two widely used drugs, propranolol and ibuprofen.

View Article and Find Full Text PDF

Ternary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and high-sensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl).

View Article and Find Full Text PDF

The interaction of DNA with a synthetic biocompatible and biodegradable cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP·HCl), was investigated by high-sensitivity differential scanning calorimetry under conditions of strong and weak electrostatic interactions of the macroions. Thermodynamic parameters of the DNA double-helix melting were determined as a function of pH and the PMAP·HCl/DNA weight ratio. PMAP·HCL was shown to reveal two functions with respect to DNA: the polyelectrolyte function and the donor-acceptor one.

View Article and Find Full Text PDF

The interaction of poly(methylaminophosphazene) hydrochloride (PMAP·HCl) of varying degrees of ionization (f) with the potassium salt of ι-carrageenan was studied by high-sensitivity differential scanning calorimetry at a KCl concentration of 0.15 M, which is included for the purpose of stabilizing the helix conformation of the polysaccharide up to 55 °C. The conditions of strong (pH 3.

View Article and Find Full Text PDF

Interpenetrated polymer networks (IPN) of poly(N-isopropylacrylamide) (PNIPA) and chitosan (two grades) were prepared by free radical polymerisation and cross-linking of PNIPA (700 mM) with bis(acrylamide) (20 mM) in chitosan solutions (1.5 wt.% in acetic acid), and subsequent immersion in glutaraldehyde solutions (0 to 0.

View Article and Find Full Text PDF