CdSe nanoplatelets (NPLs) have been reported as triplet sensitizers for photon upconversion (UC). However, their UC quantum yields lag behind more conventional systems. Here, we take advantage of their one-dimensional quantum confinement to decouple effects caused by the energetic driving force and lateral size.
View Article and Find Full Text PDFPhoton upconversion, particularly via triplet-triplet annihilation (TTA), could prove beneficial in expanding the efficiencies and overall impacts of optoelectronic devices across a multitude of technologies. The recent development of bulk metal halide perovskites as triplet sensitizers is one potential step toward the industrialization of upconversion-enabled devices. Here, we investigate the impact of varying additions of bromide into a lead iodide perovskite thin film on the TTA upconversion process in the annihilator molecule rubrene.
View Article and Find Full Text PDFTriplet-triplet annihilation-based photon upconversion (UC) using bulk perovskite sensitizers has been previously shown to facilitate efficient UC at low fluences. However, the fabrication of the UC devices has not been fully optimized; thus, there is room for improvement. Here, we apply techniques that have been successful in enhancing the performance of perovskite solar cells in order to also improve perovskite-sensitized UC devices.
View Article and Find Full Text PDFThe emerging field of lead halide perovskite-sensitized triplet-triplet annihilation (TTA) in rubrene shows great promise in upconversion applications. By rapidly transferring single charge carriers instead of bound triplet states, perovskites enable a high triplet population in rubrene, yielding low I values. In this contribution, we investigate the role of the triplet population on the upconverted emission.
View Article and Find Full Text PDF