Publications by authors named "Alexander S Barrett"

Background: Overexpression of HER2 plays an important role in cancer progression and is the target of multiple therapies in HER2-positive breast cancer. Recent studies have also highlighted the presence of activating mutations in HER2, and HER3 that are predicted to enhance HER2 downstream pathway activation in a HER2-dependent manner.

Methods: In this report, we present two exceptional responses in hormone receptor-positive, HER2-nonamplified, HER2/HER3 co-mutated metastatic breast cancer patients who were treated with the anti-HER2-directed monoclonal antibodies, trastuzumab and pertuzumab.

View Article and Find Full Text PDF

Purpose: Promising single-agent activity from sotorasib and adagrasib in -mutant tumors has provided clinical evidence of effective KRAS signaling inhibition. However, comprehensive analysis of -variant prevalence, genomic alterations, and the relationship between and immuno-oncology biomarkers is lacking.

Materials And Methods: Retrospective analysis of deidentified records from 79,004 patients with various cancers who underwent next-generation sequencing was performed.

View Article and Find Full Text PDF

Mammographically-detected breast density impacts breast cancer risk and progression, and fibrillar collagen is a key component of breast density. However, physiologic factors influencing collagen production in the breast are poorly understood. In female rats, we analyzed gene expression of the most abundantly expressed mammary collagens and collagen-associated proteins across a pregnancy, lactation, and weaning cycle.

View Article and Find Full Text PDF

Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma.

View Article and Find Full Text PDF

Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density.

View Article and Find Full Text PDF

Small primary breast cancers can show surprisingly high potential for metastasis. Clinical decision-making for tumor aggressiveness, including molecular profiling, relies primarily on analysis of the cancer cells. Here we show that this analysis is insufficient - that the stromal microenvironment of the primary tumor plays a key role in tumor cell dissemination and implantation at distant sites.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx.

View Article and Find Full Text PDF

Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a severe fibrotic component that compromises treatment, alters the immune cell profile and contributes to patient mortality. It has been shown that early on in this process, dynamic changes in tissue biomechanics play an integral role in supporting pancreatic cancer development and progression. Despite the acknowledgement of its importance, a granular view of how stromal composition changes during the course of PDAC progression remains largely unknown.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is readily enriched by decellularizing tissues with nondenaturing detergents to solubilize and deplete the vast majority of cellular components. This approach has been used extensively to generate ECM scaffolds for regenerative medicine technologies and in 3D cell culture to model how the ECM contributes to disease progression. A highly enriched ECM fraction can then be generated using a strong chaotrope buffer that is compatible with downstream bottom-up proteomic analysis or 3D cell culture experiments after extensive dialysis.

View Article and Find Full Text PDF

The plant homeodomain (PHD) finger of Set3 binds methylated lysine 4 of histone H3 in vitro and in vivo; however, precise selectivity of this domain has not been fully characterized. Here, we explore the determinants of methyllysine recognition by the PHD fingers of Set3 and its orthologs. We use X-ray crystallographic and spectroscopic approaches to show that the Set3 PHD finger binds di- and trimethylated states of H3K4 with comparable affinities and employs similar molecular mechanisms to form complexes with either mark.

View Article and Find Full Text PDF