We report here the application of the low-temperature X-ray photoelectron spectroscopy (cryo-XPS) of fast-frozen dispersions as a quasi technique for a case study of metal sulfides reacted in acidic aqueous solutions under non-oxidizing and moderate oxidizing conditions. The sulfide surfaces are known to tend to be depleted in metals, producing essentially sulfur-enriched surfaces and extended underlayers on Fe- and Cu-bearing sulfides, which have previously been examined using depth-sensitive HAXPES and cryo-XPS. The current study is focused on zinc and lead sulfides (natural sphalerite and galena), for whom both the experiment and theoretical DFT simulations suggest a low stability of sulfur-excessive structures.
View Article and Find Full Text PDFSurface nanobubbles at hydrophobic interfaces now attract much attention in various fields but their role in wetting-related phenomena is still unclear. Herein, we report the effect of a preliminary contact of "hot" solids with cold water previously proposed for generation of surface nanobubbles, on wettability of compact materials and flotation of particulate galena (PbS), sphalerite (ZnS), and Pb-Zn sulfide ore. Atomic force microscopy was applied to visualize the nanobubbles at galena crystals heated in air and contacted with cold water; X-ray photoelectron spectroscopy was used to characterize the surface composition of minerals.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2019
Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide.
View Article and Find Full Text PDFThe depletion of oxidized metal sulfide surfaces in metals due to the preferential release of cations is a common, but as yet poorly understood phenomenon. Herein, X-ray photoelectron spectroscopy using excitation energies from 1.25 keV to 6 keV, and Fe K- and S K-edge X-ray absorption near-edge spectra in total electron and partial fluorescence yield modes was employed to study natural chalcopyrite oxidized in air and etched in an acidic ferric sulfate solution.
View Article and Find Full Text PDFAlthough mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.
View Article and Find Full Text PDF