Background: Quantification of vertebral bone marrow (VBM) water-fat composition has been proposed as advanced imaging biomarker for osteoporosis. Estrogen deficiency is the primary reason for trabecular bone loss in postmenopausal women. By reducing estrogen levels aromatase inhibitors (AI) as part of breast cancer therapy promote bone loss.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined structures is needed.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2019
Background: The paraspinal muscles play an important role in the onset and progression of lower back pain. It would be of clinical interest to identify imaging biomarkers of the paraspinal musculature that are related to muscle function and strength. Diffusion tensor imaging (DTI) enables the microstructural examination of muscle tissue and its pathological changes.
View Article and Find Full Text PDFAdvanced magnetic resonance imaging (MRI) methods enable non-invasive quantification of body fat situated in different compartments. At the level of the lumbar spine, the paraspinal musculature is the compartment spatially and functionally closely related to the vertebral column, and both vertebral bone marrow fat (BMF) and paraspinal musculature fat contents have independently shown to be altered in various metabolic and degenerative diseases. However, despite their close relationships, potential correlations between fat compositions of these compartments remain largely unclear.
View Article and Find Full Text PDFObjectives: Chemical shift encoding-based water-fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength.
Methods: Twenty-six healthy subjects (57.
Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF) using chemical shift encoding-based water-fat magnetic resonance imaging (MRI). 156 healthy subjects were recruited (age range 20-29 years: 12/30 males/females; 30-39: 15/9; 40-49: 4/14; 50-59: 9/27; 60-69: 5/19; 70-79: 4/8).
View Article and Find Full Text PDF