Publications by authors named "Alexander Riemer"

Members of the genus thrive in diverse habitats and use a broad range of recalcitrant organic molecules coupled to denitrification or O respiration. To gain a holistic understanding of the model organism EbN1, we studied its catabolic network dynamics in response to 3-(4-hydroxyphenyl)propanoate, phenylalanine, 3-hydroxybenzoate, benzoate, and acetate utilized under nitrate-reducing versus oxic conditions. Integrated multi-omics (transcriptome, proteome, and metabolome) covered most of the catabolic network (199 genes) and allowed for the refining of knowledge of the degradation modules studied.

View Article and Find Full Text PDF

Genome-scale metabolic models are of high interest in a number of different research fields. Flux balance analysis (FBA) and other mathematical methods allow the prediction of the steady-state behavior of metabolic networks under different environmental conditions. However, many existing applications for flux optimizations do not provide a metabolite-centric view on fluxes.

View Article and Find Full Text PDF

The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12 during transition from heterotrophy to photoheterotrophy (growth on succinate).

View Article and Find Full Text PDF

Background: Genome-scale metabolic models are important tools in systems biology. They permit the in-silico prediction of cellular phenotypes via mathematical optimisation procedures, most importantly flux balance analysis. Current studies on metabolic models mostly consider reaction fluxes in isolation.

View Article and Find Full Text PDF

We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5) and a temperature of 75-80°C (optimum 80°C).

View Article and Find Full Text PDF

The cost- and material-efficient development of next-generation catalysts would benefit greatly from a molecular-level understanding of the interaction between reagents and catalysts in chemical conversion processes. Here, we trace the conversion of alkene and glycol in single zeolite catalyst particles with unprecedented chemical and spatial resolution. Combined nonlinear Raman and two-photon fluorescence spectromicroscopies reveal that alkene activation constitutes the first reaction step toward glycol etherification and allow us to determine the activation enthalpy of the resulting carbocation formation.

View Article and Find Full Text PDF