IEEE Trans Neural Netw Learn Syst
December 2018
We present here a learning system using the iCub humanoid robot and the SpiNNaker neuromorphic chip to solve the real-world task of object-specific attention. Integrating spiking neural networks with robots introduces considerable complexity for questionable benefit if the objective is simply task performance. But, we suggest, in a cognitive robotics context, where the goal is understanding how to compute, such an approach may yield useful insights to neural architecture as well as learned behavior, especially if dedicated neural hardware is available.
View Article and Find Full Text PDFJ Neurosci Methods
September 2012
Computer simulation of neural matter is a promising methodology for understanding the function of the brain. Recent anatomical studies have mapped the intricate structure of cortex, and these data have been exploited in numerous simulations attempting to explain its function. However, the largest of these models run inconveniently slowly and require vast amounts of electrical power, which hinders useful experimentation.
View Article and Find Full Text PDFDedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network.
View Article and Find Full Text PDF