The electrophilic activation of various substrates via double or even triple protonation in superacidic media enables reactions with extremely weak nucleophiles. Despite the significant progress in this area, the utility of organophosphorus compounds as superelectrophiles still remains limited. Additionally, the most common superacids require a special care due to their high toxicity, exceptional corrosiveness and moisture sensitivity.
View Article and Find Full Text PDFIn contrast to hypervalent iodine compounds, the chemistry of their sulfur analogues has been considerably less explored. Herein, we report the direct C-H bond thiolation of electron-rich heterocycles, arenes, and 1,3-dicarbonyls by dichlorosulfuranes under mild conditions. Mechanistic studies and density functional theory calculations suggest the radical chain mechanism of the disclosed transformation.
View Article and Find Full Text PDFHerein, we report the design and synthesis of novel 7-aza-coumarine-3-carboxamides via scaffold-hopping strategy and evaluation of their in vitro anticancer activity. Additionally, the improved non-catalytic synthesis of 7-azacoumarin-3-carboxylic acid is reported, which features water as the reaction medium and provides a convenient alternative to the known methods. The anticancer activity of the most potent 7-aza-coumarine-3-carboxamides against the HuTu 80 cell line is equal to that of reference Doxorubicin, while the selectivity towards the normal cell line is 9-14 fold higher.
View Article and Find Full Text PDFUreas are often thought of as "double amides" due to the obvious structural similarity of these functional groups. The main structural feature of an amide is its planarity, which is responsible for the conjugation between the nitrogen atom and carbonyl moiety and the decrease of amide nucleophilicity. Consequently, since amides are poor nucleophiles, ureas are often thought of as poor nucleophiles as well.
View Article and Find Full Text PDFHerein we present the regio- and diastereoselective synthesis of novel pyrrolidine-fused spiro-dihydrophosphacoumarins via intermolecular [3 + 2] cycloaddition reaction. The presented approach is complementary to existing ones and provides an easy entry to the otherwise inaccessible derivatives. Additionally, the unprecedented pathway of the reaction of 4-hydroxycoumarin with azomethine ylides is described.
View Article and Find Full Text PDFThe cooperative L-proline/Brønsted acid/base promoted reaction of 2-ethoxypyrrolidines or -substituted 4,4-diethoxybutan-1-amines with methyl(alkyl/aryl)ketones for the synthesis of 2-(acylmethylene)pyrrolidine derivatives is reported. The key features of the developed protocol are gram-scale synthesis of the target compounds, easily available starting materials, operational simplicity and usage of non-expensive reagents.
View Article and Find Full Text PDFIn this article, we report a highly regioselective method for the synthesis of new fused pyridine derivatives─2,3-disubstituted quinolines and 1,2-dihydro-3-pyrazolo[3,4-]pyridin-3-one derivatives. The method is based on the reaction of 1,1-diethoxybutane derivatives with aromatic and heterocyclic nucleophiles. The isolated compounds are similar to the products formed as a result of the Debner-Miller reaction.
View Article and Find Full Text PDFThe series of novel taurine-derived diarylmethanes and dibenzoxanthenes was synthesized starting from simple commercially available precursors via modular three-stage approach. All the newly synthesized compounds were screened for in vitro antibacterial and antifungal activity, as well as cytotoxicity towards normal and cancer cell lines. Some of the synthesized compounds exhibited 2-4-fold higher activity against S.
View Article and Find Full Text PDFMolecules
July 2021
A series of novel 4-(het)arylimidazoldin-2-ones were obtained by the acid-catalyzed reaction of (2,2-diethoxyethyl)ureas with aromatic and heterocyclic -nucleophiles. The proposed approach to substituted imidazolidinones benefits from excellent regioselectivity, readily available starting materials and a simple procedure. The regioselectivity of the reaction was rationalized by quantum chemistry calculations and control experiments.
View Article and Find Full Text PDFGold(I)-catalyzed reactions of electron-poor alkynes are still a challenging process. A straightforward synthesis of phosphorus-based heterocycles, namely, 2-phenyl 1-isophosphinoline 2-oxides , is reported. The reaction used PPhAuCl precatalyst in combination with triflic acid under microwave activation and afforded isophosphinoline 2-oxides in moderate to quantitative yields through a fully regioselective 6-endo-dig hydroarylation cyclization, paving the way toward an effective synthesis of phosphorus heterocycles.
View Article and Find Full Text PDFNew lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length.
View Article and Find Full Text PDFHere, we present an approach to novel "hybrid" biologically active compounds based on a combination of sterically hindered phenol and ammonium pharmacophores in a single molecule. The novel target ammonium salts were obtained by the reaction of 3-(3,5-di--butyl-4-hydroxyphenyl)--(2-(dimethylamino)alkyl)propanamide with aliphatic bromides or by the reaction of phosphorylated methylenequinones with diamines followed by alkylation with organic bromides. A series of twenty-three novel multifunctional ammonium salts that contain a sterically hindered phenolic fragment were assessed for antimicrobial, cytotoxic and antioxidant activity.
View Article and Find Full Text PDFReported herein is the first example of a gold-catalyzed cyclization of bis(arylmethyl)ethynylphosphine oxides. This represents an original approach to bridgehead methanophosphocines 1, eight-membered heterocycles. Gold catalyst in combination with triflic acid activates alkyne and induces a double hydroarylation.
View Article and Find Full Text PDFThe approach to the novel 1-[(2-aminoethyl)sulfonyl]-2-arylpyrrolidines via unique intramolecular cyclization/aza-Michael reactions of N-(4,4-diethoxybutyl)ethenesulfonamide have been developed, which benefits from high yields of target compounds, mild reaction conditions, usage of inexpensive and low-toxic reagents, and allows for wide variability in both amine and aryl moieties. Biotesting with whole-cell luminescent bacterial biosensors responding to DNA damage showed that all tested compounds are not genotoxic. Tested compounds differently affect the formation of biofilms by Vibrio aquamarinus DSM 26054.
View Article and Find Full Text PDFHybrid drug strategy is based on the combination of two or more pharmacophores into a new chemical entity to improve the properties of the original compounds or to obtain double action of resulting molecule. Hybrid molecules, comprised of some pharmacophore and nitric oxide (NO) donor moiety, constitute one of the more promising approaches for the design of drugs. Furoxans and benzofuroxans are considered NO releasing prodrugs and are of great interest for researchers.
View Article and Find Full Text PDF