Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast.
View Article and Find Full Text PDFChemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast.
View Article and Find Full Text PDFHere we develop a mechanism of protein optimization using a computational approach known as "genetic programming". We developed an algorithm called Protein Optimization Engineering Tool (POET). Starting from a small library of literature values, the use of this tool allowed us to develop proteins that produce four times more MRI contrast than what was previously state-of-the-art.
View Article and Find Full Text PDFProtein engineers conventionally use tools such as Directed Evolution to find new proteins with better functionalities and traits. More recently, computational techniques and especially machine learning approaches have been recruited to assist Directed Evolution, showing promising results. In this article, we propose POET, a computational Genetic Programming tool based on evolutionary computation methods to enhance screening and mutagenesis in Directed Evolution and help protein engineers to find proteins that have better functionality.
View Article and Find Full Text PDFAt the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential.
View Article and Find Full Text PDF