Background: Systemic inflammatory response syndrome (SIRS) is a predictor of serious infectious complications, organ failure, and death in patients with severe polytrauma and is one of the reasons for delaying early total surgical treatment. To determine the risk of SIRS within 24 h after hospitalization, we developed six machine learning models.
Materials And Methods: Using retrospective data about the patient, the nature of the injury, the results of general and standard biochemical blood tests, and coagulation tests, six models were developed: decision tree, random forest, logistic regression, support vector and gradient boosting classifiers, logistic regressor, and neural network.