Publications by authors named "Alexander Pozhitkov"

Organismal death has long been considered the irreversible ending of an organism's integrated functioning as a whole. However, the persistence of functionality in organs, tissues, and cells postmortem, as seen in organ donation, raises questions about the mechanisms underlying this resilience. Recent research reveals that various factors, such as environmental conditions, metabolic activity, and inherent survival mechanisms, influence postmortem cellular functionality and transformation.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists don't know much about how cells and body parts react when an organism dies.
  • This research could help us understand how bodies can heal themselves and change what we think about death.
  • It might also give us clues about how life begins and its limits.
View Article and Find Full Text PDF

Multiple myeloma (MM) is a blood neoplasia characterized by abnormal proliferation of plasma cells. Various treatments such as stem cell transplant (SCT), proteasome inhibitors, immune-modulating drugs, monoclonal antibodies and selective inhibitors of nuclear export have been routinely used to treat MM. However, relapse and treatment resistance are common problems in MM patients.

View Article and Find Full Text PDF

The post‑translational modification of proteins by ubiquitinating enzymes plays a central role in a number of cellular functions, such as cell proteolysis, DNA repair, and cell signaling and communication. Deubiquitinating enzymes (DUBs) disassemble ubiquitin chains and remove ubiquitin moieties from proteins. Targeting DUBs in cancer models has revealed an important role for these enzymes in tumorigenesis, and they therefore have emerged as attractive therapeutic targets.

View Article and Find Full Text PDF

Teriflunomide, the active metabolite of leflunomide, downregulates c-Myc expression through inhibition of PIM kinases. Leflunomide together with lenalidomide significantly extended survival in an in vivo MM model.

View Article and Find Full Text PDF

Background: Recent data support the implication of accelerated titanium dissolution products in peri-implantitis. It is unknown whether these dissolution products have an effect on the peri-implant microbiome, the target of existing peri-implantitis therapies.

Purpose: This study assessed the relationship between the peri-implant microbiome, dissolved titanium levels, and peri-implantitis.

View Article and Find Full Text PDF

Background: Our previous study found that more than 500 transcripts significantly increased in abundance in the zebrafish and mouse several hours to days postmortem relative to live controls. The current literature suggests that most mRNAs are post-transcriptionally regulated in stressful conditions. We rationalized that the postmortem transcripts must contain sequence features (3- to 9- mers) that are unique from those in the rest of the transcriptome and that these features putatively serve as binding sites for proteins and/or non-coding RNAs involved in post-transcriptional regulation.

View Article and Find Full Text PDF

Background: Multiplexed milliliter-scale chemostats are useful for measuring cell physiology under various degrees of nutrient limitation and for carrying out evolution experiments. In each chemostat, fresh medium containing a growth rate-limiting metabolite is pumped into the culturing chamber at a constant rate, while culture effluent exits at an equal rate. Although such devices have been developed by various labs, key parameters - the accuracy, precision, and operational range of flow rate - are not explicitly characterized.

View Article and Find Full Text PDF

We previously reported that thousands of transcripts in the mouse and zebrafish significantly increased in abundance in a time series spanning from life to several days after death. Transcript abundances were determined by: calibrating each microarray probe using a dilution series of pooled RNAs, fitting the probe-responses to adsorption models, and back-calculating abundances using the probe signal intensity of a sample and the best fitting model. The accuracy of the abundance measurements was not assessed in our previous study because individual transcript concentrations in the calibration pool were not known.

View Article and Find Full Text PDF

After a vertebrate dies, many of its organ systems, tissues, and cells remain functional while its body no longer works as a whole. We define this state as the "twilight of death" - the transition from a living body to a decomposed corpse. We claim that the study of the twilight of death is important to ethical, legal and medical science.

View Article and Find Full Text PDF

According to the Human Microbiome Project, 90% of the cells in a healthy adult body are microorganisms. What happens to these cells after human host death, defined here as the thanatomicrobiome (i.e.

View Article and Find Full Text PDF

Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids.

View Article and Find Full Text PDF

Models on hybrid speciation assume that hybridization generates increased phenotypic variance that is utilized to invade new adaptive peaks. We test to what extent this prediction can be traced using gene expression data in the fish species Cottus perifretum and Cottus rhenanus as well as a natural hybrid lineage referred to as invasive sculpins. In addition, interspecies crosses were used to explore evolutionary trajectories from initial stages to the hybrid lineage.

View Article and Find Full Text PDF

We report the construction of a genome-wide fish metabolic network model, MetaFishNet, and its application to analyzing high throughput gene expression data. This model is a stepping stone to broader applications of fish systems biology, for example by guiding study design through comparison with human metabolism and the integration of multiple data types. MetaFishNet resources, including a pathway enrichment analysis tool, are accessible at http://metafishnet.

View Article and Find Full Text PDF

Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals.

View Article and Find Full Text PDF

Background: Sheepshead minnow (Cyprinodon variegatus) are small fish capable of withstanding exposure to very low levels of dissolved oxygen, as well as extreme temperatures and salinities. It is an important model in understanding the impacts and biological response to hypoxia and co-occurring compounding stressors such as polycyclic aromatic hydrocarbons, endocrine disrupting chemicals, metals and herbicides. Here, we initiated a project to sequence and analyze over 10,000 ESTs generated from the Sheepshead minnow (Cyprinodon variegatus) as a resource for investigating stressor responses.

View Article and Find Full Text PDF

Background: Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art.

View Article and Find Full Text PDF

Methylotrophs, organisms able to gain energy and carbon from compounds containing no carbon-carbon bonds, such as methane, methanol and methylated amines, are widespread in nature. However, knowledge of their nutrient preference and their metabolism is mostly based on experiments with cultures grown in defined laboratory conditions. Here, we use transcriptomics to explore the activity of one methylotroph, Methyotenera mobilis in its natural environment, lake sediment from which it has been previously isolated.

View Article and Find Full Text PDF

Background: Determination and quantification of nucleic acid components in a mixture is usually accomplished by microarray approaches, where the mixtures are hybridized against specific probes. As an alternative, we propose here that a single sequencing reaction from a mixture of nucleic acids holds enough information to potentially distinguish the different components, provided it is known which components can occur in the mixture.

Results: We describe an algorithm that is based on a set of linear equations which can be solved when the sequencing profiles of the individual components are known and when the number of sequenced nucleotides is larger than the number of components in the mixture.

View Article and Find Full Text PDF

Two physico-chemical perturbations were applied to ECFP, EGFP, EYFP and DsRed fluorescent proteins: high hydrostatic pressure and encapsulation in reversed micelles. The observed fluorescence changes were described by two-state model and quantified by thermodynamic formalism. ECFP, EYFP and DsRed exhibited similar reaction volumes under pressure.

View Article and Find Full Text PDF

Background: The identification of species or species groups with specific oligo-nucleotides as molecular signatures is becoming increasingly popular for bacterial samples. However, it shows also great promise for other small organisms that are taxonomically difficult to tract.

Results: We have devised here an algorithm that aims to find the optimal probes for any given set of sequences.

View Article and Find Full Text PDF