Publications by authors named "Alexander Pogrebnoi"

Metal hydrides are feasible for energy storage applications as they are able to decompose with hydrogen gas release. In this work, gaseous complex sodium hydrides, NaMH and NaMH (M = B or Al), have been investigated using DFT/B3P86 and MP2 methods with 6-311++G(d,p) basis set; the optimized geometry, vibrational spectra and thermodynamic (TD) properties have been determined. Based on TD approach, a stability of the hydrides to different dissociation channels is analysed; the enthalpies of formation ∆H°(0) of gaseous species have been obtained: - 1 ± 17 kJ mol (NaBH), 91 ± 14 kJ mol (NaAlH), - 13 ± 16 kJ mol (NaBH), and 71 ± 16 kJ mol (NaAlH).

View Article and Find Full Text PDF

Optoelectronic properties of triphenylamine dyes arising from the embedded five-membered π-linkers CHX (X = O, NH, S, Se, Te) and varying anchoring groups, cyanoacrylic acid and hydantoin, in D-π-π-A model are examined. The reported properties for both, isolated dyes and dye@TiO complexes, are realized through density functional theory (DFT) and time-dependent DFT. The study reveals that chalcogen doping (X = S, Se, Te) enhances absorption and fluorescent emission spectra in the visible and NIR regions.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) have attracted widespread attention due to their unique features. In the present work, molecular engineered triphenylamine based dyes featuring donor-bridge-acceptor architecture have been considered and investigated for suitable properties for DSSCs applications. Hydantoin anchoring group has been introduced replacing the commonly used cyanoacrylic acid to improve the long-term stability of the device.

View Article and Find Full Text PDF

Structural and optoelectronic properties of lawsone (L), lawsone ether (LE) and bilawsone (BL) were studied theoretically using the DFT and time-dependent DFT methods with hybrid functional B3LYP5 and 6-311G (2d,p) basis set. For the monomer lawsone molecule, isomerization reaction between two rotational isomers was analyzed based on a thermodynamic approach. The electronic spectra of the dyes molecules in a vacuum and solvents (DMSO and CHCl) were computed.

View Article and Find Full Text PDF