Single-photon nonlinearity, namely, the change in the response of the system as the result of the interaction with a single photon, is generally considered an inherent property of a single quantum emitter. Although the dependence on the number of emitters is well understood for the case of two-level systems, deterministic operations such as single-photon switching or photon-atom gates inherently require more complex level structures. Here, we theoretically consider single-photon switching in ensembles of emitters with a Λ-level scheme and show that the switching efficiency vanishes with the number of emitters.
View Article and Find Full Text PDFVortices are topologically nontrivial defects that generally originate from nonlinear field dynamics. All-optical generation of photonic vortices-phase singularities of the electromagnetic field-requires sufficiently strong nonlinearity that is typically achieved in the classical optics regime. We report on the realization of quantum vortices of photons that result from a strong photon-photon interaction in a quantum nonlinear optical medium.
View Article and Find Full Text PDFThe ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices.
View Article and Find Full Text PDFWe theoretically study subradiant states in an array of atoms coupled to photons propagating in a one-dimensional waveguide focusing on the strongly interacting many-body regime with large excitation fill factor f. We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization followed by a high-order singular value decomposition. This approach has allowed us to visualize and understand the structure of a many-body quantum state.
View Article and Find Full Text PDFWe study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide. Our calculation reveals two-polariton eigenstates that have a highly irregular wave function in real space. This indicates the Bethe ansatz breakdown and the onset of quantum chaos, in stark contrast to the conventional integrable problem of two interacting bosons in a box.
View Article and Find Full Text PDFWe develop a rigorous theoretical framework for interaction-induced phenomena in the waveguide quantum electrodynamics (QED) driven by mechanical oscillations of the qubits. Specifically, we predict that the simplest setup of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction. Moreover, the combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry, quite unexpected for a purely quantum system without artificially engineered gain and loss.
View Article and Find Full Text PDFWe predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishable photons, where one photon creates a standing wave that traps the other photon. The localization is caused by the interplay between on-site repulsion due to the photon blockade and the waveguide-mediated long-range coupling between the qubits.
View Article and Find Full Text PDFWe develop a rigorous theoretical approach for analyzing inelastic scattering of photon pairs in arrays of two-level qubits embedded into a waveguide. Our analysis reveals a strong enhancement of the scattering when the energy of incoming photons resonates with the double-excited subradiant states. We identify the role of different double-excited states in the scattering, such as superradiant, subradiant, and twilight states, as a product of single-excitation bright and subradiant states.
View Article and Find Full Text PDFTopological photonics has emerged as a route to robust optical circuitry protected against disorder and now includes demonstrations such as topologically protected lasing and single-photon transport. Recently, nonlinear optical topological structures have attracted special theoretical interest, as they enable tuning of topological properties by a change in the light intensity and can break optical reciprocity to realize full topological protection. However, so far, non-reciprocal topological states have only been realized using magneto-optical materials and macroscopic set-ups with external magnets, which is not feasible for nanoscale integration.
View Article and Find Full Text PDFWe theoretically study the dissipative Bose-Hubbard model describing the array of tunneling-coupled cavities with non-conservative photon-photon interaction. The bound two-photon states are formed in this system either in the limited range of the center-of-mass wave vectors or in the full Brillouin zone, depending on the strength of the dissipative interaction. Transition between these two regimes is manifested as an exceptional point in the complex energy spectrum.
View Article and Find Full Text PDFIncreasing temperature is known to quench the excitonic emission of bulk silicon, which is due to thermally induced dissociation of excitons. Here, we demonstrate that the effect of temperature on the excitonic emission is reversed for quantum-confined silicon nanocrystals. Using laser-induced heating of silicon nanocrystals embedded in SiO, we achieved a more than threefold (>300%) increase in the radiative (photon) emission rate.
View Article and Find Full Text PDFIntegrated photonics is a leading platform for quantum technologies including nonclassical state generation, demonstration of quantum computational complexity and secure quantum communications. As photonic circuits grow in complexity, full quantum tomography becomes impractical, and therefore an efficient method for their characterization is essential. Here we propose and demonstrate a fast, reliable method for reconstructing the two-photon state produced by an arbitrary quadratically nonlinear optical circuit.
View Article and Find Full Text PDFWe propose the concept of atom-mediated spontaneous parametric down-conversion, in which photon-pair generation can take place only in the presence of a single two-level emitter, relying on the bandgap evanescent modes of a nonlinear periodic waveguide. Using a guided signal mode, an evanescent idler mode, and an atom-like emitter with the idler's transition frequency embedded in the structure, we find a heralded excitation mechanism, in which the detection of a signal photon outside the structure heralds the excitation of the embedded emitter. We use a rigorous Green's function quantization method to model this heralding mechanism in a 1D periodic waveguide and determine its robustness against losses.
View Article and Find Full Text PDFRecently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. It is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.
View Article and Find Full Text PDFWe develop a general theoretical framework of integrated paired photon-plasmon generation through spontaneous wave mixing in nonlinear plasmonic and metamaterial nanostructures, rigorously accounting for material dispersion and losses in the quantum regime through the electromagnetic Green function. We identify photon-plasmon correlations in layered metal-dielectric structures with 70% internal heralding quantum efficiency and reveal a novel mechanism of broadband generation enhancement due to topological transition in hyperbolic metamaterials.
View Article and Find Full Text PDFIt is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution.
View Article and Find Full Text PDFThe Purcell effect is defined as a modification of the spontaneous emission rate of a quantum emitter at the presence of a resonant cavity. However, a change of the emission rate of an emitter caused by an environment has a classical counterpart. Any small antenna tuned to a resonance can be described as an oscillator with radiative losses, and the effect of the environment on its radiation can be modeled and measured in terms of the antenna radiation resistance, similar to a quantum emitter.
View Article and Find Full Text PDFWe study the scattering of polaritons by free electrons in hyperbolic photonic media and demonstrate that the unconventional dispersion and high local density of states of electromagnetic modes in composite media with hyperbolic dispersion can lead to a giant Compton-like shift and dramatic enhancement of the scattering cross section. We develop a universal approach to study multiphoton processes in nanostructured media and derive the intensity spectrum of the scattered radiation for realistic metamaterial structures.
View Article and Find Full Text PDFWe suggest a novel type of photonic topological edge states in zigzag arrays of dielectric nanoparticles based on optically induced magnetic Mie resonances. We verify our general concept by the proof-of-principle microwave experiments with dielectric spherical particles, and demonstrate, experimentally, the ability to control the subwavelength topologically protected electromagnetic edge modes by changing the polarization of the incident wave.
View Article and Find Full Text PDFBosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes.
View Article and Find Full Text PDFThe routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness.
View Article and Find Full Text PDFOptical forces constitute a fundamental phenomenon important in various fields of science, from astronomy to biology. Generally, intense external radiation sources are required to achieve measurable effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined by an anisotropy, in order to maximize their radiation efficiency.
View Article and Find Full Text PDFLight localization in disordered systems and Bragg scattering in regular periodic structures are considered traditionally as two entirely opposite phenomena: disorder leads to degradation of coherent Bragg scattering whereas Anderson localization is suppressed by periodicity. Here we reveal a non-trivial link between these two phenomena, through the Fano interference between Bragg scattering and disorder-induced scattering, that triggers both localization and de-localization in random systems. We find unexpected transmission enhancement and spectrum inversion when the Bragg stop-bands are transformed into the Bragg pass-bands solely owing to disorder.
View Article and Find Full Text PDF