Publications by authors named "Alexander Pipchuk"

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study.

View Article and Find Full Text PDF

Kinase cascades are a fundamental feature of cellular signaling and play a vital role in disease progression. Thus, tools to monitor the activity of kinase cascades are of high importance. Our group has developed a split-luciferase biosensor system to monitor the activity of the Hippo pathway, a kinase cascade that regulates a wide variety of cellular processes.

View Article and Find Full Text PDF

The Hippo signaling network is dependent on protein-protein interactions (PPIs) as a mechanism of signal transduction to regulate organ size, cellular proliferation and differentiation, tumorigenesis, and other cellular processes. Current efforts aim to resolve the complex regulation of upstream Hippo components or focus on identifying targeted drugs for use in cancer therapy. Despite extensive characterization of the Hippo pathway interactome by affinity purification mass spectrometry (AP-MS) and other methodologies, previous research methods have not been sufficient to achieve these aims.

View Article and Find Full Text PDF

The Hippo pathway has emerged as a key signaling pathway that regulates a broad range of biological functions, and dysregulation of the Hippo pathway is a feature of a variety of cancers. Given this, some have suggested that disrupting the interaction of the Hippo core component YAP and its paralog TAZ with transcriptional factor TEAD may be an effective strategy for cancer therapy. However, there are currently no clinically available drugs targeting the YAP/TAZ-TEAD interaction for cancer treatment.

View Article and Find Full Text PDF