Publications by authors named "Alexander Petkov"

Multiforce nickel-titanium (NiTi) orthodontic archwires release progressively increasing forces in a front-to-back direction along their length. The properties of NiTi orthodontic archwires depend on the correlation and characteristics of their microstructural phases (austenite, martensite and the intermediate R-phase). From a clinical and manufacturing point of view, the determination of the austenite finish (Af) temperature is of the greatest importance, as in the austenitic phase, the alloy is most stable and exhibits the final workable form.

View Article and Find Full Text PDF

Heterostructures of Ga[Formula: see text]O[Formula: see text] with other materials such as Si, SiC or diamond, are a possible way of addressing the low thermal conductivity and lack of p-type doping of Ga[Formula: see text]O[Formula: see text] for device applications, as well as of improving device reliability. In this work we study the electrical and thermal properties of Ga[Formula: see text]O[Formula: see text]-SiO[Formula: see text] heterostructures. Here, thin-film gallium oxide with thickness ranging between 8 and 30 nm was deposited onto a silicon substrate with a thermal oxide by means of oxidised liquid gallium layer delamination.

View Article and Find Full Text PDF

Multiforce orthodontic archwires are thermodynamic wires made of nickel-titanium alloy (Ni-Ti). They release biologically tolerable forces along their length, progressively increasing from front to back. The frontal archwires' segments distribute the weakest force: the premolar, the greater, and the molar, the greatest.

View Article and Find Full Text PDF

Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials.

View Article and Find Full Text PDF

The significant issue of the classic multiangle data-processing technique is that the height up to which this technique allows the reliable profiling of the searched atmosphere is always significantly less than the maximum operative range of the scanning lidar signals. The existing multiangle inversion methodology does not allow for the proper inversion into optical profiles of the distant range signals measured in and close to zenith. In this study, a data-processing technique is considered which allows for increasing the maximal heights when profiling the atmosphere with scanning lidar; it is achieved by using the auxiliary backscatter near-end solution and the assumption of a constant lidar ratio over high altitudes.

View Article and Find Full Text PDF

The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used as auxiliary data to extract the vertical transmittance profile from the zenith signal.

View Article and Find Full Text PDF

The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures are discussed. We also show how such a technique can be applied to one-directional measurements.

View Article and Find Full Text PDF

The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt.

View Article and Find Full Text PDF

We present an alternative method for determining the total offset in lidar signal created by a daytime background-illumination component and electrical or digital offset. Unlike existing techniques, here the signal square-range-correction procedure is initially performed using the total signal recorded by lidar, without subtraction of the offset component. While performing the square-range correction, the lidar-signal monotonic change due to the molecular component of the atmosphere is simultaneously compensated.

View Article and Find Full Text PDF