We use AlphaFold2 (AF2) to model the monomer and dimer structures of an intrinsically disordered protein (IDP), Nvjp-1, assisted by molecular dynamics (MD) simulations. We observe relatively rigid dimeric structures of Nvjp-1 when compared with the monomer structures. We suggest that protein conformations from multiple AF2 models and those from MD trajectories exhibit a coherent trend: the conformations of an IDP are deviated from each other and the conformations of a well-folded protein are consistent with each other.
View Article and Find Full Text PDFDespite the success of AlphaFold2 (AF2), it is unclear how AF2 models accommodate for ligand binding. Here, we start with a protein sequence from Acidimicrobiaceae TMED77 (T7RdhA) with potential for catalyzing the degradation of per- and polyfluoroalkyl substances (PFASs). AF2 models and experiments identified T7RdhA as a corrinoid iron-sulfur protein (CoFeSP) which uses a norpseudo-cobalamin (BVQ) cofactor and two FeS iron-sulfur clusters for catalysis.
View Article and Find Full Text PDFAlphaFold 2 (AF2) has placed Molecular Biology in a new era where we can visualize, analyze and interpret the structures and functions of all proteins solely from their primary sequences. We performed AF2 structure predictions for various protein systems, including globular proteins, a multi-domain protein, an intrinsically disordered protein (IDP), a randomized protein, two larger proteins (> 1000 AA), a heterodimer and a homodimer protein complex. Our results show that along with the three dimensional (3D) structures, AF2 also decodes protein sequences into residue flexibilities via both the predicted local distance difference test (pLDDT) scores of the models, and the predicted aligned error (PAE) maps.
View Article and Find Full Text PDF