Publications by authors named "Alexander Pautsch"

Article Synopsis
  • Ceramides are important sphingolipids that play a crucial role in managing cellular metabolism, and six specific enzymes (CerS) are responsible for their synthesis.
  • C16 ceramide, linked to obesity and insulin resistance, has CerS6 as a potential drug target due to its specific action in these conditions.
  • New research using cryo-electron microscopy reveals how CerS6 works, showing that it uses a unique reaction mechanism and interacts with substances like the mycotoxin fumonisin B1, paving the way for future drug development.
View Article and Find Full Text PDF

Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients.

View Article and Find Full Text PDF

A molecular understanding of the proteins involved in fructose metabolism is essential for controlling the current spread of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism starts with the phosphorylation of D-fructose to fructose 1-phosphate by ketohexokinase (KHK). KHK exists in two alternatively spliced isoforms: the hepatic and intestinal isoform KHK-C and the peripheral isoform KHK-A.

View Article and Find Full Text PDF
Article Synopsis
  • PHT1 is a histidine/oligopeptide transporter that plays a crucial role in immune responses by interacting with the adaptor protein TASL, leading to type I interferon production.
  • Chronic activation of this pathway is linked to systemic lupus erythematosus (SLE), highlighting the importance of understanding the PHT1-TASL interaction for developing treatments for autoimmune diseases.
  • The study presents the Cryo-EM structure of PHT1 and suggests a model for the PHT1-TASL complex, where the first 16 residues of TASL form a helix that interacts with PHT1, providing insights into their functional relationship in immune signaling.
View Article and Find Full Text PDF

Inhibitors of the proprotein convertase furin might serve as broad-spectrum antiviral therapeutics. High cellular potency and antiviral activity against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported for (3,5-dichlorophenyl)pyridine-derived furin inhibitors. Here we characterized the binding mechanism of this inhibitor class using structural, biophysical, and biochemical methods.

View Article and Find Full Text PDF

The abnormal amplification of a CAG repeat in the gene coding for huntingtin (HTT) leads to Huntington's disease (HD). At the protein level, this translates into the expansion of a polyglutamine (polyQ) stretch located at the HTT N terminus, which renders HTT aggregation prone by unknown mechanisms. Here we investigated the effects of polyQ expansion on HTT in a complex with its stabilizing interaction partner huntingtin-associated protein 40 (HAP40).

View Article and Find Full Text PDF

Drug discovery is an expensive and time-consuming process. To make this process more efficient quantum chemistry methods can be employed. The electrophilicity index is one property that can be calculated by quantum chemistry methods, and if calculated correctly gives insight into the reactivity of covalent inhibitors.

View Article and Find Full Text PDF

In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target.

View Article and Find Full Text PDF

Thanks to their unique mode of action, covalent drugs represent an exceptional opportunity for drug design. After binding to a biologically relevant target system, covalent compounds form a reversible or irreversible covalent bond with a nucleophilic amino acid. Due to the inherently large binding energy of a covalent bond, covalent binders exhibit higher potencies and thus allow potentially lower drug dosages.

View Article and Find Full Text PDF

We determined two crystal structures of the chemokine receptor CCR2A in complex with the orthosteric antagonist MK-0812. Full-length CCR2A, stabilized by rubredoxin and a series of five mutations were resolved at 3.3 Å.

View Article and Find Full Text PDF

Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington's disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT.

View Article and Find Full Text PDF

The mixed lineage kinase ZAK is a key regulator of the MAPK pathway mediating cell survival and inflammatory response. ZAK is targeted by several clinically approved kinase inhibitors, and inhibition of ZAK has been reported to protect from doxorubicin-induced cardiomyopathy. On the other hand, unintended targeting of ZAK has been linked to severe adverse effects such as the development of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF.

View Article and Find Full Text PDF

We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.

View Article and Find Full Text PDF

The lipidic mesophase or in meso method for crystallizing membrane proteins has several high profile targets to its credit and is growing in popularity. Despite its success, the method is in its infancy as far as rational crystallogenesis is concerned. Consequently, significant time, effort, and resources are still required to generate structure-grade crystals, especially with a new target type.

View Article and Find Full Text PDF

Glucokinase (GK) plays a major role in the regulation of blood glucose homeostasis in both the liver and the pancreas. In the liver, GK is controlled by the GK regulatory protein (GKRP). GKRP in turn is activated by fructose 6-phosphate (F6P) and inactivated by fructose 1-phosphate (F1P).

View Article and Find Full Text PDF

High amounts of membrane protein samples are needed for structural or functional analysis and a first bottleneck is often to obtain sufficient production efficiencies. The reduced complexity of protein production in cell-free expression systems results in a frequent correlation of efficiency problems with the essential transcription/translation process. We present a systematic tag variation strategy for the rapid improvement of cell-free expression efficiencies of membrane proteins based on the optimization of translation initiation.

View Article and Find Full Text PDF

The very recently published first X-ray structure of the β2 adrenergic receptor in its active state hosting a small molecule (PDB ID: 3P0G) reveals a lot of information about the G-protein-coupled receptor (GPCR) activation process from a structural point of view. When compared to the inactive state crystal structure of β2, large differences are seen in the GPCR helical structure at the cytoplasmatic side, whereas very subtle changes occur at the ligand binding site. The observation that there are hardly any differences in the binding site of agonists and inverse agonists implies that in silico predictions of the efficacy of ligands will be very hard.

View Article and Find Full Text PDF

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein.

View Article and Find Full Text PDF

Disrupting the interaction between glycogen phosphorylase and the glycogen targeting subunit (G(L)) of protein phosphatase 1 is emerging as a novel target for the treatment of type 2 diabetes. To elucidate the molecular basis of binding, we have determined the crystal structure of liver phosphorylase bound to a G(L)-derived peptide. The structure reveals the C terminus of G(L) binding in a hydrophobically collapsed conformation to the allosteric regulator-binding site at the phosphorylase dimer interface.

View Article and Find Full Text PDF

The family of C3-like exoenzymes comprises seven bacterial ADP-ribosyltransferases of different origin. The common hallmark of these exoenzymes is the selective N-ADP-ribosylation of the low molecular mass GTP-binding proteins RhoA, B, and C and inhibition of signal pathways controlled by Rho GTPases. Therefore, C3-like exoenzymes were applied as pharmacological tools for analyses of cellular functions of Rho protein in numerous studies.

View Article and Find Full Text PDF

C3 exoenzymes from bacterial pathogens ADP-ribosylate and inactivate low-molecular-mass GTPases of the Rho subfamily. Ral, a Ras subfamily GTPase, binds the C3 exoenzymes from Clostridium botulinum and C. limosum with high affinity without being a substrate for ADP ribosylation.

View Article and Find Full Text PDF