Lipopolysaccharide (LPS) contributes to asthma exacerbations and development of inhaled corticosteroid insensitivity. Complete resistance to systemic corticosteroids is rare, and most patients lie on a continuum of steroid responsiveness. This study aimed to examine the sensitivity of combined ovalbumin- (Ova) and LPS-induced functional and inflammatory responses to inhaled and systemic corticosteroid in conscious guinea pigs to test the hypothesis that the route of administration affects sensitivity.
View Article and Find Full Text PDFAirway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells.
View Article and Find Full Text PDFIntroduction: Inhalation of antigen in atopic asthma induces early (EAR) and late asthmatic responses (LARs), inflammatory cell infiltration and airways hyperresponsiveness (AHR). Previously, we have established a protocol of sensitisation and subsequent ovalbumin (Ova) inhalation challenge in guinea-pigs which induced these 4 features (Smith & Broadley, 2007). However, the responses of guinea-pigs to Ova challenge have recently declined, producing no LAR or AHR and diminished EAR and cells.
View Article and Find Full Text PDF