Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease.
View Article and Find Full Text PDFOxidative stress is a major contributor to progressive neurodegenerative disease and may be a key target for the development of novel preventative and therapeutic strategies. Nitroxides have been successfully utilised to study changes in redox status (biological probes) and modulate radical-induced oxidative stress. This study investigates the efficacy of DCTEIO (5,6-dicarboxy-1,1,3,3-tetraethyllisoindolin-2-yloxyl), a stable, kinetically-persistent, nitroxide-based antioxidant, as a retinal neuroprotectant.
View Article and Find Full Text PDFCovering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties.
View Article and Find Full Text PDFThe radical reactions of dimethylsulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) with reactive oxygen species (ROS) in the presence of a nitroxide radical scavenger have been evaluated both synthetically and in analytical practice. Fenton-mediated generation of oxygen-centred radicals produced several unusual products that reflect the fragmentation and ring-opening radical mechanisms of DMSO and THTO respectively. Addition of pollution-derived ROS to DMSO/THTO nitroxide solutions produced LC-MS detectable amounts of the same products isolated from the larger-scaled Fenton reactions.
View Article and Find Full Text PDFBacterial sliding clamps bind to DNA and act as protein-protein interaction hubs for several proteins involved in DNA replication and repair. The partner proteins all bind to a common pocket on sliding clamps via conserved linear peptide sequence motifs, which suggest the pocket as an attractive target for development of new antibiotics. Herein we report the X-ray crystal structures and biochemical characterization of β sliding clamps from the Gram-negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae.
View Article and Find Full Text PDF