Publications by authors named "Alexander P Hoover"

Metachronal motion is used across a wide range of organisms for a diverse set of functions. However, despite its ubiquity, analysis of this behavior has been difficult to generalize across systems. Here we provide an overview of known commonalities and differences between systems that use metachrony to generate fluid flow.

View Article and Find Full Text PDF

Metachronal waves are ubiquitous in propulsive and fluid transport systems across many different scales and morphologies in the biological world. Tomopterids are a soft-bodied, holopelagic polychaete that use metachrony with their flexible, gelatinous parapodia to deftly navigate the midwater ocean column that they inhabit. In the following study, we develop a three-dimensional, fluid-structure interaction model of a tomopterid parapodium to explore the emergent metachronal waves formed from the interplay of passive body elasticity, active muscular tension, and hydrodynamic forces.

View Article and Find Full Text PDF

For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell's motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials.

View Article and Find Full Text PDF

The intertidal zone is a turbulent landscape where organisms face numerous mechanical challenges from powerful waves. A model for understanding the solutions to these physical problems, the American horseshoe crab (Limulus polyphemus), is a marine arthropod that mates in the intertidal zone, where it must contend with strong ambient flows to maintain its orientation during locomotion and reproduction. Possible strategies to maintain position include either negative lift generation or the minimization of positive lift in flow.

View Article and Find Full Text PDF