Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 μJ, 2.
View Article and Find Full Text PDFSolid, powdered samples are often prepared for infrared (IR) spectroscopy analysis in the form of compressed pellets. The intense scattering of incident light by such samples inhibits applications of more advanced IR spectroscopic techniques, such as two-dimensional (2D)-IR spectroscopy. We describe here an experimental approach that enables the measurement of high-quality 2D-IR spectra from scattering pellets of zeolites, titania, and fumed silica in the OD-stretching region of the spectrum under flowing gas and variable temperature up to ∼500 C.
View Article and Find Full Text PDFThis work investigates the acid sites in a commercial ZSM-5 zeolite catalyst by a combination of spectroscopic and physical methods. The Brønsted acid sites in such catalysts are associated with the aluminum substituted into the zeolite lattice, which may not be identical to the total aluminum content of the zeolite. Inelastic neutron scattering spectroscopy (INS) directly quantifies the concentrations of Brønsted acid protons, silanol groups, and hydroxyl groups associated with extra-framework aluminum species.
View Article and Find Full Text PDFQuasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations are applied in combination to investigate the dynamics of methane in H-ZSM-5 zeolite catalysts used for methanol-to-hydrocarbons reactions. Methane is employed as an inert model for the methanol reaction feedstock, and studies are made of the fresh catalyst and used catalysts with varying levels of coke buildup to investigate the effect of coking on reactant mobility. Measurements are made in the temperature range from 5 to 373 K.
View Article and Find Full Text PDFSteam de-alumination is used to prepare a H-ZSM-5 material representative of industrial acid zeolite catalysts. Characterisation shows extensive loss of zeolite acidity but minimal loss of framework crystallinity in the treated material. The material's interaction with propene is probed by means of inelastic and quasielastic neutron scattering, providing information on the reactivity and mobility of the propene respectively.
View Article and Find Full Text PDFThe techniques of quasi-elastic and inelastic neutron scattering (QENS and INS) are applied to investigate the oligomerization of propene over a ZSM-5 zeolite. Investigations are performed at low temperatures, allowing identification of the onset of the oligomerization reaction and observation of the low-energy spectral changes due to intermediate formation that are difficult to observe by optical methods. Oligomerization proceeds via formation of a hydrogen-bonded precursor by an interaction of the propene with an internal acid site followed by protonation and chain growth with protonation being the rate-limiting step.
View Article and Find Full Text PDFHow the methyl torsion transition energy in unsaturated systems is affected by its environment is investigated. It is strongly influenced by both its immediate neighborhood, (the number of methyl groups present in the molecule) and the intermolecular interactions. It is clear that the intermolecular interactions have a major influence on the torsion transition energy, as demonstrated unambiguously previously for mesitylene and also seen here for other systems.
View Article and Find Full Text PDFObservation of the oligomerization of propene in ZSM-5 at 293 K by neutron vibrational spectroscopy shows that the product species are linear alkyl chains. No evidence is found for the formation of branched products. The selective formation of linear alkyl chains is attributed to a confinement effect within the zeolite pore structure.
View Article and Find Full Text PDF