Publications by authors named "Alexander P Duryea"

A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm.

View Article and Find Full Text PDF

Histotripsy is a tissue ablation method that utilizes focused, high-amplitude ultrasound to generate a cavitation bubble cloud that mechanically fractionates tissue. Effective histotripsy depends on the initiation, control, and maintenance of cavitation bubble clouds in the targeted area. In this study, we hypothesized that a low-pressure acoustic pulse sequence applied before and/or during histotripsy therapy would increase the cavitation initiation pressure threshold and the growth of cavitation bubble clouds.

View Article and Find Full Text PDF

Cavitation plays a significant role in the efficacy of stone comminution during shockwave lithotripsy (SWL). Although cavitation on the surface of urinary stones helps to improve fragmentation, cavitation bubbles along the propagation path may shield or block subsequent shockwaves (SWs) and potentially induce collateral tissue damage. Previous in vitro work has shown that applying low-amplitude acoustic waves after each SW can force bubbles to consolidate and enhance SWL efficacy.

View Article and Find Full Text PDF

The efficacy of ultrasound therapies such as hock-wave lithotripsy and histotripsy can be compromised by residual cavitation bubble nuclei that persist following the collapse of primary cavitation. In our previous work, we have developed a unique strategy for mitigating the effects of these residual bubbles using low-amplitude ultrasound pulses to stimulate their aggregation and subsequent coalescence—effectively removing them from the field. Here, we further develop this bubble removal strategy through an investigation of the effect of frequency on the consolidation process.

View Article and Find Full Text PDF

Remanent bubble nuclei generated by primary cavitation collapse can limit the efficiency of histotripsy softtissue fractionation. When these residual bubbles persist from one histotripsy pulse to the next, they can seed the repetitive nucleation of cavitation bubbles at a discrete set of sites within the focal volume. This effect-referred to as cavitation memory- manifests in inefficient lesion formation, because certain sites within the focal volume are overtreated whereas others remain undertreated.

View Article and Find Full Text PDF

Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy, with pulses applied at a low rate generating more efficient stone erosion in comparison with those applied at a high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse.

View Article and Find Full Text PDF

Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence.

View Article and Find Full Text PDF

Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P-) exceeds the intrinsic threshold of the medium (26 to 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold.

View Article and Find Full Text PDF

Rate-dependent efficacy has been extensively documented in shock wave lithotripsy (SWL) stone comminution, with shock waves (SWs) delivered at a low rate producing more efficient fragmentation in comparison to those delivered at high rates. Cavitation is postulated to be the primary source underlying this rate phenomenon. Residual bubble nuclei that persist along the axis of SW propagation can drastically attenuate the waveform's negative phase, decreasing the energy which is ultimately delivered to the stone and compromising comminution.

View Article and Find Full Text PDF

Stone comminution in shock wave lithotripsy (SWL) has been documented to result from mechanical stresses conferred directly to the stone, as well as the activity of cavitational microbubbles. Studies have demonstrated that the presence of this cavitation activity is crucial for stone subdivision; however, its exact role in the comminution process remains somewhat weakly defined, in part because it is difficult to isolate the cavitational component from the shock waves themselves. In this study, we further explored the importance of cavitation in SWL stone comminution through the use of histotripsy ultrasound therapy.

View Article and Find Full Text PDF

Shock wave lithotripsy (SWL) suffers from the fact that it can produce residual stone fragments of significant size (>2 mm). Mechanistically, cavitation has been shown to play an important role in the reduction of such fragments to smaller debris. In this study, we assessed the feasibility of using cavitationally-based pulsed ultrasound therapy (histotripsy) to erode kidney stones.

View Article and Find Full Text PDF

Background And Purpose: Histotripsy is a pulsed focused ultrasound technology in which initiation and control of acoustic cavitation allow for precise mechanical fractionation of tissues. The present study examines the feasibility of using histotripsy for erosion of urinary calculi.

Materials And Methods: Histotripsy treatment was delivered from a 750-kHz transducer in the form of 5-cycle acoustic pulses at a 1-kHz pulse repetition frequency.

View Article and Find Full Text PDF

Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel.

View Article and Find Full Text PDF

Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters) and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and noninvasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses.

View Article and Find Full Text PDF