The transcription factor MEF2C plays a critical role in the development of the linear heart tube, but the specific transcriptional networks controlled by MEF2C remain largely undefined. To address this, we performed combined single-nucleus RNA-and ATAC-sequencing on wild type and MEF2C-null embryos at distinct stages of development. We identified a broadly "posteriorized" cardiac gene signature and chromatin landscape throughout the heart tube in the absence of MEF2C.
View Article and Find Full Text PDFCellular electrophysiology is the foundation of many fields, from basic science in neurology, cardiology, oncology to safety critical applications for drug safety testing, clinical phenotyping, etc. Patch-clamp voltage clamp is the gold standard technique for studying cellular electrophysiology. Yet, the quality of these experiments is not always transparent, which may lead to erroneous conclusions for studies and applications.
View Article and Find Full Text PDFAll new drugs must go through preclinical screening tests to determine their proarrhythmic potential. While these assays effectively filter out dangerous drugs, they are too conservative, often misclassifying safe compounds as proarrhythmic. In this study, we attempt to address this shortcoming with a novel, medium-throughput drug-screening approach: we use an automated patch-clamp system to acquire optimized voltage clamp (VC) and action potential (AP) data from human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at several drug concentrations (baseline, 3×, 10× and 20× the effective free plasma concentrations).
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer potential as an in vitro model for studying drug cardiotoxicity and patient-specific cardiovascular disease. The inherent electrophysiological heterogeneity of these cells limits the depth of insights that can be drawn from well-designed experiments. In this review, we provide our perspective on some sources and the consequences of iPSC-CM heterogeneity.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity.
View Article and Find Full Text PDFMolecular signaling networks drive a diverse range of cellular decisions, including whether to proliferate, how and when to die, and many processes in between. Such networks often connect hundreds of proteins, genes, and processes. Understanding these complex networks is aided by computational modeling, but these tools require extensive programming knowledge.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2024
Cardiac ion currents may compensate for each other when one is compromised by a congenital or drug-induced defect. Such redundancy contributes to a robust repolarization reserve that can prevent the development of lethal arrhythmias. Most efforts made to describe this phenomenon have quantified contributions by individual ion currents.
View Article and Find Full Text PDFAs a renewable, easily accessible, human-derived model, human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) are a promising tool for studying arrhythmia-related factors, including cardiotoxicity and congenital proarrhythmia risks. An oft-mentioned limitation of iPSC-CMs is the abundant cell-to-cell variability in recordings of their electrical activity. Here, we develop a new method, rapid ionic current phenotyping (RICP), that utilizes a short (10 s) voltage clamp protocol to quantify cell-to-cell heterogeneity in key ionic currents.
View Article and Find Full Text PDFAims: Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have become an essential tool to study arrhythmia mechanisms. Much of the foundational work on these cells, as well as the computational models built from the resultant data, has overlooked the contribution of seal-leak current on the immature and heterogeneous phenotype that has come to define these cells. The aim of this study is to understand the effect of seal-leak current on recordings of action potential (AP) morphology.
View Article and Find Full Text PDFBackground And Purpose: Before advancing to clinical trials, new drugs are screened for their pro-arrhythmic potential using a method that is overly conservative and provides limited mechanistic insight. The shortcomings of this approach can lead to the mis-classification of beneficial drugs as pro-arrhythmic.
Experimental Approach: An in silico-in vitro pipeline was developed to circumvent these shortcomings.
Background: Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study, we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE.
Methods: Eleven open-chest dogs underwent DSE both with and without a critical stenosis.