Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the gene (). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant , but whether these are reversible under therapy remains unclear.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is a progressive neurodegenerative disorder associated with aging, caused by an expanded polyglutamine (polyQ) repeat within the Huntingtin (HTT) protein. In HD, degeneration of the striatum and atrophy of the cortex are observed while cerebellum is less affected.
Objective: To test the hypothesis that HTT protein levels decline with age, which together with HTT mutation could influence disease progression.
Biochim Biophys Acta Mol Basis Dis
June 2017
Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor.
View Article and Find Full Text PDFThe role of aggregate formation in the pathophysiology of Huntington's disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD.
View Article and Find Full Text PDFSecretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice.
View Article and Find Full Text PDFBackground: Unusually large CAG repeat expansions (>60) in exon one of Huntingtin (HTT) are invariably associated with a juvenile-onset form of Huntington's disease (HD), characterized by a more extensive and rapidly progressing neuropathology than the more prevalent adult-onset form. However, existing mouse models of HD that express the full-length Htt gene with CAG repeat lengths associated with juvenile HD (ranging between ~75 to ~150 repeats in published models) exhibit selective neurodegenerative phenotypes more consistent with adult-onset HD. Objective: To determine if a very large CAG repeat (>200) in full-length Htt elicits neurodegenerative phenotypes consistent with juvenile HD.
View Article and Find Full Text PDFHSV infection of adult humans occasionally results in life-threatening herpes simplex encephalitis (HSE) for reasons that remain to be defined. An animal system that could prove useful to model HSE could be microRNA-155 knockout (miR-155KO) mice. Thus, we observe that mice with a deficiency of miR-155 are highly susceptible to HSE with a majority of animals (75-80%) experiencing development of HSE after ocular infection with HSV-1.
View Article and Find Full Text PDFHuntington disease (HD) is an inherited progressive neurodegenerative disorder, characterized by motor, cognitive, and psychiatric deficits as well as neurodegeneration and brain atrophy beginning in the striatum and the cortex and extending to other subcortical brain regions. The genetic cause is an expansion of the CAG repeat stretch in the HTT gene encoding huntingtin protein (htt). Here, we generated an HD transgenic rat model using a human bacterial artificial chromosome (BAC), which contains the full-length HTT genomic sequence with 97 CAG/CAA repeats and all regulatory elements.
View Article and Find Full Text PDFWe report a retrospective case series of four patients with genetically confirmed Huntington's disease (HD) and sporadic amyotrophic lateral sclerosis (ALS), examining the brain and spinal cord in two cases. Neuropathological assessment included a polyglutamine recruitment method to detect sites of active polyglutamine aggregation, and biochemical and immunohistochemical assessment of TDP-43 pathology. The clinical sequence of HD and ALS varied, with the onset of ALS occurring after the mid-50's in all cases.
View Article and Find Full Text PDFHuntington Disease (HD) is a fatal neurodegenerative disorder, caused by a mutation in the Huntington gene. Although HD is most often diagnosed in mid-life, the key to its clinical expression may be found during brain maturation. In the present work, we performed in vivo diffusion kurtosis imaging (DKI) in order to study brain microstructure alterations in developing transgenic HD rat pups.
View Article and Find Full Text PDFPosttranslational amyloid-β (Aβ) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aβ species, pyroglutamate-amyloid-β (pE3-Aβ), has been described as a major constituent of Aβ deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aβ species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aβ aggregates rapidly and is known to seed additional Aβ aggregation.
View Article and Find Full Text PDFThe formation of polyglutamine aggregates occupies a central role in the pathophysiology of neurodegenerative diseases caused by expanded trinucleotide repeats encoding the amino acid glutamine. This chapter describes sensitive histological methods for detection of tissue sites that are capable of further recruitment of polyglutamine and for sites rich in polyglutamine defined immunohistochemically. These methods have been found to be applicable in a number of diseases and animal models of disease.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expanded CAG repeat leading to the synthesis of an aberrant protein and to the formation of polyglutamine (polyQ)-containing inclusions and aggregates. Limited information is available concerning the association of neuropathological markers with the development of behavioral markers in HD. Using a previously generated transgenic rat model of HD (tgHD rat), we performed association studies on the time-course of behavioral symptoms (motor function, learning, anxiety) and the appearance of striatal atrophy, 1C2 immunopositive aggregates and polyQ recruitment sites, a precursor to these aggregates.
View Article and Find Full Text PDFWe have serendipitously established a mouse that expresses an N-terminal human huntingtin (htt) fragment with an expanded polyglutamine repeat (approximately 120) under the control of the endogenous human promoter (shortstop). Frequent and widespread htt inclusions occur early in shortstop mice. Despite these inclusions, shortstop mice display no clinical evidence of neuronal dysfunction and no neuronal degeneration as determined by brain weight, striatal volume, and striatal neuronal count.
View Article and Find Full Text PDF