The aetiology of chronic aseptic meningitis is difficult to establish. meningitis in particular is often diagnosed late, as cerebrospinal fluid (CSF) work-up and imaging findings are nonspecific. A 35-year-old patient with chronic aseptic meningitis, for which repeated microbiological testing of CSF was unrevealing, was finally diagnosed with meningitis with cauda equina involvement using metagenomic next-generation sequencing (mNGS).
View Article and Find Full Text PDFIntroduction: Recurrence after curative resection of hepatic alveolar echinococcosis remains a clinical challenge. The current study tested if assessment of anti-recEm18 allows for postsurgical patient surveillance.
Methods: A retrospective study with patients undergoing liver resection for alveolar echinococcosis (n = 88) at the University Hospital Bern from 2002 to 2020 and at the University Hospital and Medical Center Ulm from 2011 to 2017 was performed.
Objectives: The diagnosis of larval cestodiases in humans primarily depends on using imaging techniques in combination with serological tests. However, in case of atypical imaging results, negative serology results due to immunosuppression, or infection with rare taeniid species, traditional diagnostic tools may not provide a definitive species-level diagnosis. We aimed to validate a rapid, reliable, and cost-effective single-step real-time PCR method that can identify and differentiate larval cestodiases from biopsy material.
View Article and Find Full Text PDFIn clinical practice, mixed-species malaria infections are often not detected by light microscopy (LM) or rapid diagnostic test, as a low number of parasites of one species may occur. Here, we report the case of an 8-year-old girl migrating with her family from Afghanistan with a two-species mixed infection with and . This case demonstrates the significance of molecular testing in the detection of mixed-species malaria infections and highlights the importance of a detailed data analysis during the medical validation procedure to prevent underestimation of mixed-species infections.
View Article and Find Full Text PDFMalaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70.
View Article and Find Full Text PDFAdherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1.
View Article and Find Full Text PDFUniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC.
View Article and Find Full Text PDFMalaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome.
View Article and Find Full Text PDF