Background: Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets.
View Article and Find Full Text PDFThe treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls.
View Article and Find Full Text PDFObjective: The objective of this study was to evaluate the impact of the anterior/posterior status of positive surgical margin (PSM) on long-term outcomes after radical prostatectomy for prostate cancer.
Patients And Methods: We included 391 consecutive PSM patients after radical prostatectomy between 1993 and 2007 excluding cases with multiple location PSM or lack of anterior/posterior status data. The oncologic impact of anterior-PSM and posterior-PSM were examined by Kaplan-Meier analysis and the Cox proportional hazards model.
For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths.
View Article and Find Full Text PDFMicroRNAs (miRNAs) specify the recruitment of deadenylases to mRNA targets. Despite this recruitment, we find that miRNAs have almost no effect on steady-state poly(A)-tail lengths of their targets in mouse fibroblasts, which motivates the acquisition of pre-steady-state measurements of the effects of miRNAs on tail lengths, mRNA levels, and translational efficiencies. Effects on translational efficiency are minimal compared to effects on mRNA levels, even for newly transcribed target mRNAs.
View Article and Find Full Text PDFObjective: To investigate the oncological impact of incidental prostate cancer (iPCa) found during radical cystoprostatectomy (RCP) on overall survival (OS) prognosis of urothelial carcinoma of the bladder (BCa).
Patients And Methods: A total of 122 RCP cases resected between 2002 and 2012 at our center were included for study. Survival of BCa patient was compared using the Kaplan-Meier method and the log-rank test.
Objective: To assess the impact of focality and location of positive surgical margins (PSM) on long-term outcomes after radical prostatectomy (RP) for prostate cancer (PCa), including biochemical recurrence (BCR), metastasis and overall mortality.
Patients And Methods: From a total of 2796 cases of RP between 1993 and 2007 in our single hospital, 476 cases with PSMs were identified and included in this study. PSM location was categorized into apex, peripheral, and bladder neck.
Background: MicroRNAs (miRNAs) are short regulatory RNAs that derive from hairpin precursors. Important for understanding the functional roles of miRNAs is the ability to predict the messenger RNA (mRNA) targets most responsive to each miRNA. Progress towards developing quantitative models of miRNA targeting in Drosophila and other invertebrate species has lagged behind that of mammals due to the paucity of datasets measuring the effects of miRNAs on mRNA levels.
View Article and Find Full Text PDFBackground: All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells.
Results: Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6.
Because maturing oocytes and early embryos lack appreciable transcription, posttranscriptional regulatory processes control their development. To better understand this control, we profiled translational efficiencies and poly(A)-tail lengths throughout Drosophila oocyte maturation and early embryonic development. The correspondence between translational-efficiency changes and tail-length changes indicated that tail-length changes broadly regulate translation until gastrulation, when this coupling disappears.
View Article and Find Full Text PDFPoly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded greater understanding of poly(A)-tail function. Here we describe poly(A)-tail length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of millions of individual RNAs isolated from yeasts, cell lines, Arabidopsis thaliana leaves, mouse liver, and zebrafish and frog embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with mRNAs encoding ribosomal proteins and other 'housekeeping' proteins tending to have shorter tails.
View Article and Find Full Text PDFThe post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3' untranslated regions (3' UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-seq reads substantially increased and improved existing 3' UTR annotations, resulting in confidently identified 3' UTRs for >79% of the annotated protein-coding genes in zebrafish.
View Article and Find Full Text PDFA common feature of tumors arising from diverse tissue types is a reliance on aerobic glycolysis for glucose metabolism. This metabolic difference between cancer cells and normal cells could be exploited for therapeutic benefit in patients. Cancer cells universally express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), and previous work has demonstrated that PKM2 expression is necessary for aerobic glycolysis and cell proliferation in vivo.
View Article and Find Full Text PDFN-methyl amino acids (N-Me AAs) are a common component of nonribosomal peptides (NRPs), a class of natural products from which many clinically important therapeutics are obtained. N-Me AAs confer peptides with increased conformational rigidity, membrane permeability, and protease resistance. Hence, these analogues are highly desirable building blocks in the ribosomal synthesis of unnatural peptide libraries, from which functional, NRP-like molecules may be identified.
View Article and Find Full Text PDF