Publications by authors named "Alexander N Weber"

Objective: To report a chronic recurrent multifocal osteomyelitis (CRMO)-like clinical phenotype with multisystem inflammation associated with a novel gene variant in the spectrum of IL-1-mediated diseases.

Methods: A 3-year-old boy presented with recurrent episodes of fever, serositis, pancreatitis and high inflammatory markers with onset at age 13 months. At age 3 years, he started limping.

View Article and Find Full Text PDF

Chitin is the second most abundant polysaccharide in nature and linked to fungal infection and asthma. However, immune receptors directly binding chitin and signaling immune activation and inflammation have not been clearly identified because polymeric crude chitin with unknown purity and molecular composition has been used. By using defined chitin (N-acetyl-glucosamine) oligomers, we here identify six-subunit-long chitin chains as the smallest immunologically active motif and the innate immune receptor Toll-like receptor (TLR2) as a primary fungal chitin sensor on human and murine immune cells.

View Article and Find Full Text PDF

Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein , Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients.

View Article and Find Full Text PDF

We have previously demonstrated the nucleic acid binding capacity of phenanthridine derivatives (PHTs). Because nucleic acids are potent inducers of innate immune response through Toll-like receptors (TLRs), and because PTHs bear a structural resemblance to commonly used synthetic ligands for TLR7/8, we hypothesized that PHTs could modulate/activate immune response. We found that compound M199 induces secretion of IL-6, IL-8 and TNFα in human PBMCs and inhibits TLR3/9 activation in different cellular systems (PBMCs, HEK293 and THP-1 cell lines).

View Article and Find Full Text PDF

Cleavage of interleukin-1β (IL-1β) is a key inflammatory event in immune cells and platelets, which is mediated by nucleotide-binding domain leucine rich repeat containing protein (NLRP3)-dependent activation of caspase-1. In immune cells, NLRP3 and caspase-1 form inflammasome complexes with the adaptor proteins apoptosis-associated speck-like protein containing a CARD (ASC) and bruton's tyrosine kinase (BTK). In platelets, however, the regulatory triggers and the functional effects of the NLRP3 inflammasome are unknown.

View Article and Find Full Text PDF

Activation of Toll-like receptors induces dimerization and the recruitment of the death domain (DD) adaptor protein MyD88 into an oligomeric post receptor complex termed the Myddosome. The Myddosome is a hub for inflammatory and oncogenic signaling and has a hierarchical arrangement with 6-8 MyD88 molecules assembling with exactly 4 of IRAK-4 and 4 of IRAK-2. Here we show that a conserved motif in IRAK-4 (Ser8-X-X-X-Arg12) is autophosphorylated and that the phosphorylated DD is unable to form Myddosomes.

View Article and Find Full Text PDF

The adaptor protein MYD88 is critical for relaying activation of Toll-like receptor signaling to NF-κB activation. MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B-cell malignancies, including diffuse large B-cell lymphoma (DLBCL).

View Article and Find Full Text PDF

MicroRNAs are important posttranscriptional regulators of gene expression, which have been shown to fine-tune innate immune responses downstream of pattern recognition receptor (PRR) signaling. This study identifies miR-650 as a novel PRR-responsive microRNA that is downregulated upon stimulation of primary human monocyte-derived dendritic cells (MDDCs) with a variety of different microbe-associated molecular patterns. A comprehensive target search combining in silico analysis, transcriptional profiling, and reporter assays reveals that miR-650 regulates several well-known interferon-stimulated genes, including IFIT2 and MXA.

View Article and Find Full Text PDF

Unlabelled: Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired.

View Article and Find Full Text PDF

Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses.

View Article and Find Full Text PDF

Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.

View Article and Find Full Text PDF

Myeloid differentiation 88 (MyD88) is the key signaling adapter of Toll-like and interleukin-1 receptors. Recurrent lymphoma-associated mutations, particularly Leu265Pro (L265P), within the MyD88 Toll/interleukin-1 receptor (TIR) domain sustain lymphoma cell survival due to constitutive nuclear factor κB signaling. We found that mutated TIR domains displayed an intrinsic propensity for augmented oligomerization and spontaneous formation of cytosolic Myddosome aggregates in lymphoma cell lines, mimicking the effect of dimerized TIR domains.

View Article and Find Full Text PDF
Article Synopsis
  • TLRs 7 and 8 are special proteins in our body that help fight viruses and can also play a role in autoimmune diseases.
  • Scientists are studying how different types of RNA and certain chemicals can activate these proteins to help create new medicines.
  • This research shows that TLR7 and TLR8 respond differently to these substances, which could help improve treatment options and make them safer for people.
View Article and Find Full Text PDF

Single-nucleotide polymorphisms in Toll-like receptor 5 (), encoding a sensor for flagellin, have been shown to influence cytokine responses to intestinal bacteria and to be associated with significant alterations in the survival of colorectal carcinoma (CRC) patients. These findings point to a link between TLRs and CRC that may have both therapeutic and prognostic/predictive implications.

View Article and Find Full Text PDF

Many pathogenic microorganisms have evolved tactics to modulate host cell death or survival pathways for establishing infection. The enteropathogenic bacterium Yersinia enterocolitica deactivates TLR-induced signaling pathways, which triggers apoptosis in macrophages. In this article, we show that Yersinia-induced apoptosis of human macrophages involves caspase-dependent cleavage of the TLR adapter protein MyD88.

View Article and Find Full Text PDF

Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) binding protein (LBP) is an acute-phase protein that initiates an immune response after recognition of bacterial LPS. Here, we report the crystal structure of murine LBP at 2.9 Å resolution.

View Article and Find Full Text PDF

IRAK4, a serine/threonine kinase is a central adaptor protein in TLR signaling. To better understand the clinical significance of IRAK4 deficiency we examined the impact of IRAK4 on bacterial recognition in human monocytes. We show that IRAK4 knockdown modulates monocyte-derived cytokine secretion in response to Staphylococcus aureus and Streptococcus pneumoniae, resulting in decreased IL-12 and elevated IL-10 production, a finding also reproducible with ligands for TLR2 and TLR4.

View Article and Find Full Text PDF

The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host.

View Article and Find Full Text PDF

Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response.

View Article and Find Full Text PDF

Integrins are transmembrane adhesion molecules that mediate cell-cell and cell-extracellular matrix attachment. Integrins regulate cell growth, proliferation, migration and apoptosis and as a consequence, can have a potential role in tumour progression and metastasis. In this study, we investigated 19 non-synonymous variants in the coding region of the human integrin genes representing 3 beta subunits and 13 alpha subunits, for their potential role in melanoma susceptibility and survival.

View Article and Find Full Text PDF

Protein modifications of death receptor pathways play a central role in the regulation of apoptosis. It has been demonstrated that O-glycosylation of TRAIL-receptor (R) is essential for sensitivity and resistance towards TRAIL-mediated apoptosis. In this study we ask whether and how glycosylation of CD95 (Fas/APO-1), another death receptor, influences DISC formation and procaspase-8 activation at the CD95 DISC and thereby the onset of apoptosis.

View Article and Find Full Text PDF

TLR7 is the mammalian receptor for ssRNA and some nucleotide-like small molecules. We have generated a mouse by N-nitrose-N'-ethyl urea mutagenesis in which threonine 68 of TLR7 was substituted with isoleucine. Cells bearing this mutant TLR7 lost the sensitivity to the small-molecule TLR7 agonist resiquimod, hence the name TLR7(rsq1).

View Article and Find Full Text PDF

Background: The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids.

View Article and Find Full Text PDF

Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections.

View Article and Find Full Text PDF