Publications by authors named "Alexander Moshensky"

Tumor-associated T cells orchestrate cancer rejection after checkpoint blockade immunotherapy. T cell function depends on dynamic antigen recognition through the T cell receptor (TCR) resulting in T cell activation. Here, we present an approach to quantify the dynamics and magnitude of tumor-associated T cell activation at multiple time points in living mice using the genetically encoded calcium reporter Salsa6f and functional intravital microscopy (F-IVM).

View Article and Find Full Text PDF

PD-1 blockade unleashes potent antitumor activity in CD8 T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients.

View Article and Find Full Text PDF
Article Synopsis
  • - The circadian clock plays a crucial role in regulating the immune system and is important for both disease defense and cancer detection.
  • - Research using single-cell RNA sequencing reveals that certain immune cells, particularly PD-L1-expressing myeloid-derived suppressor cells (MDSCs), oscillate in numbers based on the time of day and suppress the activity of CD8 T cells.
  • - Timing the administration of anti-PD-L1 treatment to coincide with the peak levels of MDSCs enhances its effectiveness, highlighting the importance of circadian rhythms in cancer immunotherapy.
View Article and Find Full Text PDF

PD-1 blockade unleashes the potent antitumor activity of CD8 cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen response to immunotherapy. Tumor Treg inhibition is a promising strategy to overcome therapeutic resistance; however, the mechanisms supporting tumor Tregs during PD-1 immunotherapy are largely unexplored. Here, we report that PD-1 blockade increases tumor Tregs in mouse models of immunogenic tumors, including melanoma, and metastatic melanoma patients.

View Article and Find Full Text PDF

Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

View Article and Find Full Text PDF
Article Synopsis
  • Increased inflammation and neutrophil activity are linked to the severity of COVID-19, highlighting their role in disease progression.
  • A study examined critically ill COVID-19 patients over 11 days, measuring neutrophil functions like oxidative burst, NETosis, and cytokine levels, finding significant elevations in inflammatory cytokines.
  • The findings suggest that higher levels of neutrophils and specific cytokines, particularly interleukin-8, correlate with disease severity and mortality, indicating potential therapeutic targets.
View Article and Find Full Text PDF

Nicotine exposure increases the release of glutamate in part through stimulatory effects on pre-synaptic nicotinic acetylcholine receptors (nAChRs). To assess the impact of chronic electronic (e)-cigarette use on these drug dependence pathways, we exposed C57BL/6 mice to three types of inhalant exposures for 3 months; 1) e-cigarette aerosol generated from liquids containing nicotine (ECN), 2) e-cigarette aerosol generated from liquids containing vehicle chemicals without nicotine (Veh), and 3) air only (AC). We investigated the effects of daily e-cigarette exposure on protein levels of α7 nAChR and α4/β2 nAChR, gene expression and protein levels of astroglial glutamate transporters, including glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT), in the frontal cortex (FC), striatum (STR) and hippocampus (HIP).

View Article and Find Full Text PDF

A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels.

View Article and Find Full Text PDF

It is widely known that cigarette smoke damages host defenses and increases susceptibility to bacterial infections. , a Gram-negative bacterium that commonly colonizes the airways of smokers and patients with chronic lung disease, can cause pneumonia and sepsis and can trigger exacerbations of lung diseases. colonizing airways is consistently exposed to inhaled cigarette smoke.

View Article and Find Full Text PDF

E-cigarettes are portrayed as safer relative to conventional tobacco. However, burgeoning evidence suggests that E-cigarettes may adversely affect host defenses. However, the precise mechanisms by which E-cigarette vapor alters innate immune cell function have not been fully elucidated.

View Article and Find Full Text PDF

Unlabelled: Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death.

View Article and Find Full Text PDF