The Zr-based metal-organic framework, Zr-bzpdc-MOF, contains the photoreactive linker molecule benzophenone-4,4'-dicarboxylate (bzpdc) which imparts the possibility for photochemical post-synthetic modification. Upon irradiation with UV light, the keto group of the benzophenone moiety will react with nearly every C-H bond-containing molecule. Within this paper, we further explore the photochemical reactivity of the Zr-bzpdc-MOF, especially with regard to which restrictions govern internal versus external reactions.
View Article and Find Full Text PDFThe postsynthetic potential of the two-dimensional metal-organic framework Zr-bzpdc-MOF which is based on the photoreactive molecule benzophenone-4,4'-dicarboxylic acid (H2bzpdc) is used here to selectively functionalize the MOF surface. We report the direct radical-induced oxidative grafting-from polymerization of the precursor EDOT on Zr-bzpdc-MOF, leading to an electrically conductive composite material and opening the road to a variety of applications.
View Article and Find Full Text PDFIn this contribution we present a novel two-dimensional Zr-based metal-organic framework (MOF) which offers the possibility for delamination and post-synthetic photochemical modification at the linker molecule derived from benzophenone-4,4'-dicarboxylic acid (H bzpdc). The new Zr-bzpdc-MOF crystallizes in the orthorhombic system as crystals with rhombic shape. The structure was determined from single-crystal diffraction data.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks.
View Article and Find Full Text PDF