Freeze Foams are cellular, ceramic structures with hierarchical pore structures that are manufactured using the direct foaming process. By tailoring their morphology and strength, these foam structures are able to cover a wide range of application. Earlier works identified that pore-forming influencing factors (water and air content, suspension temperature, as well as pressure reduction rate) dictate the constitution on a macroscopic and microscopic scale.
View Article and Find Full Text PDFFreeze foaming is a method to manufacture cellular ceramic scaffolds with a hierarchical porous structure. These so-called freeze foams are predestined for the use as bone replacement material because of their internal bone-like structure and biocompatibility. On the one hand, they consist of macrostructural foam cells which are formed by the expansion of gas inside the starting suspension.
View Article and Find Full Text PDFAll solid-state batteries offer the possibility of increased safety at potentially higher energy densities compared to conventional lithium-ion batteries. In an all-ceramic oxide battery, the composite cathode consists of at least one ion-conducting solid electrolyte and an active material, which are typically densified by sintering. In this study, the reaction of the solid electrolyte LiAlTi(PO) (LATP) and the active material LiNiCoMnO (NCM622) is investigated by cosintering at temperatures between 550 and 650 °C.
View Article and Find Full Text PDFA zirconia-based potentiometric solid electrolyte gas sensor with internal solid state reference was used to study the response behavior of platinum cermet and indium tin oxide sensing electrodes. Target gases included both oxygen and carbon monoxide in nitrogen-based sample gas mixtures. It was found that with the indium tin oxide sensing electrode, the low-temperature behavior is mainly a result of incomplete equilibration due to contaminations of the electrode surface.
View Article and Find Full Text PDFAccurate knowledge of transport properties of Li-insertion materials in application-relevant temperature ranges is of crucial importance for the targeted optimization of Li-ion batteries (LIBs). Galvanostatic intermittent titration technique (GITT) is a widely applied method to determine Li-ion diffusion coefficients of electrode materials. The well-known calculation formulas based on Weppner's and Huggins' approach, imply a square-root time dependence of the potential during a GITT pulse.
View Article and Find Full Text PDFBy combining results of adsorption/desorption measurements on powders and electrical conductivity studies on thick and thin films, the interaction of indium tin oxide with various ambient gas species and carbon monoxide as potential target gas was studied between room temperature and 700 °C. The results show that the indium tin oxide surfaces exhibit a significant coverage of water-related and carbonaceous adsorbates even at temperatures as high as 600 °C. Specifically carbonaceous species, which are also produced under carbon monoxide exposure, show a detrimental effect on oxygen adsorption and may impair the film's sensitivity to a variety of target gases if the material is used in gas sensing applications.
View Article and Find Full Text PDFDuring metal cutting, high temperatures of several hundred-degree Celsius occur locally at the cutting edge, which greatly impacts tool wear and life. Not only the cutting parameters, but also the tool material's properties influence the arising cutting temperature which in turn alters the mechanical properties of the tool. In this study, the hardness and thermal conductivity of cemented tungsten carbides were investigated in the range between room temperature and 1000 °C.
View Article and Find Full Text PDFPorous ceramics can be realized by different methods and are used for various applications such as cross-flow membranes or wall-flow filters, porous burners, solar receivers, structural design elements, or catalytic supports. Within this paper, three different alternative process routes are presented, which can be used to manufacture porous ceramic components with different properties or even graded porosity. The first process route is based on additive manufacturing (AM) of macro porous ceramic components.
View Article and Find Full Text PDFTo combine the benefits of Additive Manufacturing (AM) with the benefits of Functionally Graded Materials (FGM) to ceramic-based 4D components (three dimensions for the geometry and one degree of freedom concerning the material properties at each position) the Thermoplastic 3D-Printing (CerAM - T3DP) was developed. It is a direct AM technology which allows the AM of multi-material components. To demonstrate the advantages of this technology black-and-white zirconia components were additively manufactured and co-sintered defect-free.
View Article and Find Full Text PDFWith a novel Freeze Foaming method, it is possible to manufacture porous cellular components whose structure and composition also enables them for application as artificial bones, among others. To tune the foam properties to our needs, we have to understand the principles of the foaming process and how the relevant process parameters and the foam's structure are linked. Using in situ analysis methods, like X-ray microcomputed tomography (µCT), the foam structure and its development can be observed and correlated to its properties.
View Article and Find Full Text PDFTwo new structural forms of Na CoTiO, the layered O3- and P3-forms, were synthesized and comprehensively characterized. Both materials show electrochemical activity as electrodes in Na-ion batteries. During cell charging (desodiation of the Na CoTiO cathode), we observed a structural phase transformation of O3-NaCoTiO into P3-Na CoTiO, whereas no changes other than conventional unit cell volume shrinkage were detected for P3-NaCoTiO.
View Article and Find Full Text PDFCubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN) phase can occur, with a strong deterioration in hardness and wear.
View Article and Find Full Text PDFIn our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process.
View Article and Find Full Text PDFThe solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC) is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC.
View Article and Find Full Text PDFSilicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation.
View Article and Find Full Text PDFOne task in risk assessment of engineered nanoparticles is toxicological studies. A suitable interpretation of these investigations demands a comprehensive physical-chemical characterization. Here, we present an approach to gain well-dispersed nanoparticles in physiological media.
View Article and Find Full Text PDF