This work probes the slurry architecture of a high silicon content electrode slurry with and without low molecular weight polymeric dispersants as a function of shear rate to mimic electrode casting conditions for poly(acrylic acid) (PAA) and lithium neutralized poly(acrylic acid) (LiPAA) based electrodes. Rheology coupled ultra-small angle neutron scattering (rheo-USANS) was used to examine the aggregation and agglomeration behavior of each slurry as well as the overall shape of the aggregates. The addition of dispersant has opposing effects on slurries made with PAA or LiPAA binder.
View Article and Find Full Text PDFIn this work, the spatial (in)homogeneity of aqueous processed silicon electrodes using standard poly(acrylic acid)-based binders and slurry preparation conditions is demonstrated. X-ray nanotomography shows segregation of materials into submicron-thick layers depending on the mixing method and starting binder molecular weights. Using a dispersant, or production of dispersant from the cleavage of the binder into smaller molecular weight species, increases the resulting lateral homogeneity while drastically decreasing the vertical homogeneity as a result of sedimentation and separation due to gravitational forces.
View Article and Find Full Text PDF