Publications by authors named "Alexander M Milner"

Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods).

View Article and Find Full Text PDF

Japanese macaques, Macaca fuscata, of Kamikochi in the Japanese Alps endure one of the coldest and harshest environments during winter when scarcity of food puts them at risk. However, various behaviors have evolved to mitigate potential mortality. These macaques typically eat bamboo leaves and the bark of woody plants in winter, but our previous study using the feces of Japanese macaques collected in the winter and DNA metabarcoding analysis revealed conclusively for the first time consumption of riverine benthos and brown trout.

View Article and Find Full Text PDF

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually.

View Article and Find Full Text PDF

The Japanese macaque (Macaca fuscata) is native to the main islands of Japan, except Hokkaido, and is the most northerly living non-human primate. In the Chubu Sangaku National Park of the Japanese Alps, macaques live in one of the coldest areas of the world, with snow cover limiting the availability of preferred food sources. Winter is typically a bottleneck for food availability potentially resulting in marked energy deficits, and mortality may result from famine.

View Article and Find Full Text PDF

Multidimensional analysis of community stability has recently emerged as an overarching approach to evaluating ecosystem response to disturbance. However, the approach has previously been applied only in experimental and modelling studies. We applied this concept to an 18-year time series (2000-2017) of macroinvertebrate community dynamics from a southeast Alaskan river to further develop and test the approach in relation to the effects of two extreme flood events occurring in 2005 (event 1) and 2014 (event 2).

View Article and Find Full Text PDF

Climate change is expected to intensify the effect of environmental stressors on riverine ecosystems. Extreme events, such as low flow and heatwaves, could have profound consequences for stream ecosystem functioning, but research on the impact of these stressors and their interaction across multiple processes, remains scarce. Here, we report the results of a two-month stream mesocosm experiment testing the effect of low flow (66% water level reduction, without gravel exposure) and heatwaves (three 8-d episodes of +5 °C above ambient with 10-15 days recovery between each episode) on a suite of ecosystem processes (i.

View Article and Find Full Text PDF

Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt-fed streams ( = 6) in the Kamikochi region of the northern Japanese Alps (April-December 2017).

View Article and Find Full Text PDF

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how invertebrate communities in streams respond to varying intensities of drought, revealing significant changes in functional traits that indicate vulnerability to extreme climatic events.
  • Drought led to noticeable shifts in behavioral traits, such as movement and diet, particularly during moderate drought conditions, while morphological and physiological traits responded drastically only when water was nearly gone.
  • The findings highlight that minor increases in drought intensity can cause large functional shifts in aquatic ecosystems, underscoring the need for understanding these dynamics in the context of climate change.
View Article and Find Full Text PDF

Floods have a major influence in structuring river ecosystems. Considering projected increases in high-magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities.

View Article and Find Full Text PDF

Global change threatens invertebrate biodiversity and its central role in numerous ecosystem functions and services. Functional trait analyses have been advocated to uncover global mechanisms behind biodiversity responses to environmental change, but the application of this approach for invertebrates is underdeveloped relative to other organism groups. From an evaluation of 363 records comprising >1.

View Article and Find Full Text PDF
Article Synopsis
  • Glaciers, which cover about 10% of the Earth's land, are rapidly shrinking, significantly affecting river flow and hydrology, especially during dry periods.
  • The loss of glaciers is expected to cause major changes in sediment transport and the movement of nutrients and contaminants in rivers, impacting both ecosystems and human services like agriculture and drinking water.
  • To address these changes, it's crucial for society to develop plans for adaptation and mitigation to cope with the wide-ranging effects of glacier shrinkage.
View Article and Find Full Text PDF

Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems.

View Article and Find Full Text PDF

Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable.

View Article and Find Full Text PDF

Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979.

View Article and Find Full Text PDF

1. Mesocosms are used extensively by ecologists to gain a mechanistic understanding of ecosystems based on the often untested assumption that these systems can replicate the key attributes of natural assemblages. 2.

View Article and Find Full Text PDF

Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches.

View Article and Find Full Text PDF

Disturbances reduce the biota in stream ecosystems, and leave biological legacies, including remnant species, which potentially influence post-disturbance community development but are poorly understood. We investigated whether three remnant species, the snail Radix peregra, the mayfly Serratella ignita and the freshwater shrimp Gammarus pulex, affected community development in mesocosms that mimicked disturbed habitat patches in streams. Following 21 days of colonisation, we found that the occurrence of legacy effects depended on the identity of the remnant species.

View Article and Find Full Text PDF