Publications by authors named "Alexander M McKillop"

Molecular polaritons, hybrid light-matter states resulting from strong cavity coupling of optical transitions, may provide a new route to guide chemical reactions. However, demonstrations of cavity-modified reactivity in clean benchmark systems are still needed to clarify the mechanisms and scope of polariton chemistry. Here, we use transient absorption to observe the ultrafast dynamics of CN radicals interacting with a cyclohexane (-CH) and chloroform (CHCl) solvent mixture under vibrational strong coupling of a C-H stretching mode of CH.

View Article and Find Full Text PDF

Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics.

View Article and Find Full Text PDF

Given the ubiquity of heterocycles in biologically active molecules, transformations with the capacity to modify such molecular skeletons with modularity remain highly desirable. Ring expansions that enable interconversion of privileged heterocyclic motifs are especially interesting in this regard. As such, the known mechanisms for ring expansion and contraction determine the classes of heterocycle amenable to skeletal editing.

View Article and Find Full Text PDF

Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds.

View Article and Find Full Text PDF