Caged complexes can provide impressive selective catalysts. Due to the complex shapes of such caged catalysts, however, the level of selectivity control of a single substrate cannot be extrapolated to other substrates. Herein, the substrate scope using 41 terminal alkene substrates is investigated in the hydroformylation reaction with an encapsulated rhodium catalyst [Rh(H)(CO)(P(Py(ZnTPP)))] ().
View Article and Find Full Text PDFThe use of data driven tools to predict the selectivity of homogeneous catalysts has received considerable attention in the past years. In these studies often the catalyst structure is varied, but the use of substrate descriptors to rationalize the catalytic outcome is relatively unexplored. To study whether this may be an effective tool, we investigated both an encapsulated and a non-encapsulated rhodium based catalyst in the hydroformylation reaction of 41 terminal alkenes.
View Article and Find Full Text PDFTransition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development.
View Article and Find Full Text PDFRegioselective catalytic transformations using supramolecular directing groups are increasingly popular as it allows for control over challenging reactions that may otherwise be impossible. In most examples the reactive group and the directing group are close to each other and/or the linker between the directing group is very rigid. Achieving control over the regioselectivity using a remote directing group with a flexible linker is significantly more challenging due to the large conformational freedom of such substrates.
View Article and Find Full Text PDFIn this communication, we report rhodium DIMPhos complexes with an integrated DIM-receptor that can bind carboxylate containing effectors and their application in the rhodium catalyzed hydroformylation reaction. The binding of chiral effectors in non-chiral [Rh(DIMPhos)] catalysts does not lead to enantioselective hydroformylation, but the binding of either achiral or chiral effectors can significantly enhance the enantioselectivity induced by the chiral Rh-metal complexes. For example, the supramolecular complex [Rh]/[1S⊂L3] displays high regio- and enantioselectivity in the hydroformylation of vinyl acetate (72% ee, and b/l >99), whereas in absence of this effector the ee is around 17%.
View Article and Find Full Text PDFHerein, we report a supramolecular rhodium complex that can form dimeric or monomeric Rh-species catalytically active in hydroformylation, depending on the binding of effectors within the integrated DIM-receptor. X-ray crystal structures, (high-pressure (HP)) spectroscopy studies, and molecular modelling studies show that in the absence of effectors, the preferred Rh-species formed is the dimer, of which two ligands coordinate to two rhodium metals. Importantly, upon binding guest molecules, -effectors-, to the DIM-receptor under hydroformylation conditions, the monomeric Rh-active species is formed, as evidenced by a combination of HP NMR and IR spectroscopy studies and molecular modelling.
View Article and Find Full Text PDFEfficient catalysts are crucial for the sustainable generation of fuel by splitting water. A versatile screening protocol would simplify the identification of novel and better catalysts by using high throughput experimentation. Herein, such a screening approach for the identification of molecular catalysts for chemical oxidation of water is reported, which is based on oxygen-sensitive fluorescence quenching using an OxoDish.
View Article and Find Full Text PDFThis article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular interactions between a ligand and the support. Changing the solvent releases the active catalyst back into the reactor and allows a subsequent batch reaction with the recycled active catalyst.
View Article and Find Full Text PDFThe kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate.
View Article and Find Full Text PDF