More than half of reef-building corals (Scleractinia) participate in a nutritional symbiosis, known as photosymbiosis, with photosynthetic dinoflagellates that ranges from obligate to facultative dependence. Fitting hidden-rates models allowing among-lineage variation in the rate of trait evolution to supertree and molecular phylogenies of Scleractinia, we reconstruct the history of photosymbiosis within Scleractinia and characterize its evolutionary stability. We find that most lineages of scleractinians are extraordinarily stable for the trait, evincing no instances of loss, but that in some clades photosymbiosis is more labile, thus providing a framework for comparative studies to further our mechanistic understanding of the factors that shape the evolutionary fates of scleractinian photosymbiosis.
View Article and Find Full Text PDFConservation has long focused on preserving or restoring pristine ecosystems. However, understanding and managing novel ecosystems has grown in importance as they outnumber pristine ecosystems worldwide. While non-native species may be neutral or detrimental in pristine ecosystems, it is possible that even notorious invaders could play beneficial or mixed roles in novel ecosystems.
View Article and Find Full Text PDFMulti-locus phylogenetic studies of echinoderms based on Sanger and RNA-seq technologies and the fossil record have provided evidence for the Asterozoa-Echinozoa hypothesis. This hypothesis posits a sister relationship between asterozoan classes (Asteroidea and Ophiuroidea) and a similar relationship between echinozoan classes (Echinoidea and Holothuroidea). Despite this consensus around Asterozoa-Echinozoa, phylogenetic relationships within the class Asteroidea (sea stars or starfish) have been controversial for over a century.
View Article and Find Full Text PDFSea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa.
View Article and Find Full Text PDFVariation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A.
View Article and Find Full Text PDFBackground: One of our goals for the echinoderm tree of life project (http://echinotol.org) is to identify orthologs suitable for phylogenetic analysis from next-generation transcriptome data. The current dataset is the largest assembled for echinoderm phylogeny and transcriptomics.
View Article and Find Full Text PDFHolothuria (Semperothuria) roseomaculata n. sp. is described from the main islands of Yap, Federated States of Micronesia.
View Article and Find Full Text PDFRecruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest.
View Article and Find Full Text PDFSexuality and reproductive mode are two fundamental life-history traits that exhibit largely unexplained macroevolutionary patterns among the major groups of multicellular organisms. For example, the cnidarian class Anthozoa (corals and anemones) is mainly comprised of gonochoric (separate sex) brooders or spawners, while one order, Scleractinia (skeleton-forming corals), appears to be mostly hermaphroditic spawners. Here, using the most complete phylogeny of scleractinians, we reconstruct how evolutionary transitions between sexual systems (gonochorism versus hermaphrodism) and reproductive modes (brooding versus spawning) have generated large-scale taxonomic patterns in these characters.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2009
Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood.
View Article and Find Full Text PDFBehavior, color, body size, spicules, and mitochondrial DNA were examined in two morphs from the Bohadschia marmorata (Jaeger, 1833) species complex in Micronesia to test whether they are conspecific. This complex consists of eight morphs that have been described as separate species and combined in various ways for over a century. We examined the classic B.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2005
The supertree algorithm matrix representation with parsimony was used to combine existing hypotheses of coral relationships and provide the most comprehensive species-level estimate of scleractinian phylogeny, comprised of 353 species (27% of extant species), 141 genera (63%) and 23 families (92%) from all seven suborders. The resulting supertree offers a guide for future studies in coral systematics by highlighting regions of concordance and conflict in existing source phylogenies. It should also prove useful in formal comparative studies of character evolution.
View Article and Find Full Text PDFMembers of the Holothuriidae, found globally at low to middle latitudes, are often a dominant component of Indo-West Pacific coral reefs. We present the first phylogeny of the group, using 8 species from the 5 currently recognized genera and based on approximately 540 nucleotides from a polymerase chain reaction-amplified and conserved 3' section of 16S mitochondrial ribosomal DNA. Parsimony and likelihood analyses returned identical topologies, permitting several robust inferences to be drawn.
View Article and Find Full Text PDF