Publications by authors named "Alexander M Kasprzyk"

Fano varieties are basic building blocks in geometry - they are 'atomic pieces' of mathematical shapes. Recent progress in the classification of Fano varieties involves analysing an invariant called the quantum period. This is a sequence of integers which gives a numerical fingerprint for a Fano variety.

View Article and Find Full Text PDF

Fano manifolds are basic building blocks in geometry - they are, in a precise sense, atomic pieces of shapes. The classification of Fano manifolds is therefore an important problem in geometry, which has been open since the 1930s. One can think of this as building a Periodic Table for shapes.

View Article and Find Full Text PDF

We introduce a class of Laurent polynomials, called maximally mutable Laurent polynomials (MMLPs), which we believe correspond under mirror symmetry to Fano varieties. A subclass of these, called rigid, are expected to correspond to Fano varieties with terminal locally toric singularities. We prove that there are exactly 10 mutation classes of rigid MMLPs in two variables; under mirror symmetry these correspond one-to-one with the 10 deformation classes of smooth del Pezzo surfaces.

View Article and Find Full Text PDF