Neuroscientific studies often involve some form of group analysis over multiple participants. This requires alignment of recordings across participants. A naive solution is to assume that participants' recordings can be aligned anatomically in sensor space.
View Article and Find Full Text PDFBroadly congruent mirror neurons, responding to any grasp movement, and strictly congruent mirror neurons, responding only to specific grasp movements, have been reported in single-cell studies with primates. Delineating grasp properties in humans is essential to understand the human mirror neuron system with implications for behavior and social cognition. We analyzed electrocorticography data from a natural reach-and-grasp movement observation and delayed imitation task with 3 different natural grasp types of everyday objects.
View Article and Find Full Text PDFBased on increased user experience during stimulation, frequency-modulated steady-state visual evoked potentials (FM-SSVEPs) have been suggested as an improved stimulation method for brain-computer interfaces. Adapting such a novel stimulation paradigm requires in-depth analyses of all different stimulation parameters and their influence on brain responses as well as the user experience during the stimulation. In the current manuscript, we assess the influence of different values for the modulation index, which determine the spectral distribution in the stimulation signal on FM-SSVEPs.
View Article and Find Full Text PDFWhile the existence of a human mirror neuron system is evident, the involved brain areas and their exact functional roles remain under scientific debate. A number of functionally different mirror neuron types, neurons that selectively respond to specific grasp phases and types for example, have been reported with single cell recordings in monkeys. In humans, spatially limited, intracranially recorded electrophysiological signals in the high-gamma (HG) range have been used to investigate the human mirror system, as they are associated with spiking activity in single neurons.
View Article and Find Full Text PDFDecades of research in the field of steady-state visual evoked potentials (SSVEPs) have revealed great potential of rhythmic light stimulation for brain-computer interfaces. Additionally, rhythmic light stimulation provides a non-invasive method for entrainment of oscillatory activity in the brain. Especially effective protocols enabling non-perceptible rhythmic stimulation and, thereby, reducing eye fatigue and user discomfort are favorable.
View Article and Find Full Text PDFReach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements.
View Article and Find Full Text PDFSteady-state visual evoked potentials (SSVEPs) have been widely employed for the control of brain-computer interfaces (BCIs) because they are very robust, lead to high performance, and allow for a high number of commands. However, such flickering stimuli often also cause user discomfort and fatigue, especially when several light sources are used simultaneously. Different variations of SSVEP driving signals have been proposed to increase user comfort.
View Article and Find Full Text PDFBackground: Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces. However, users experience fatigue due to exposure to flickering stimuli. High-frequency stimulation has been proposed to reduce this problem.
View Article and Find Full Text PDF