The development of new convenient tools for the design of multicomponent nucleic acid (NA) complexes is one of the challenges in biomedicine and NA nanotechnology. In this paper, we analyzed the formation of hybrid RNA/DNA concatemers and self-limited complexes by a pair of oligonucleotides using UV melting, circular dichroism spectroscopy, and a gel shift assay. Effects of the size of the linker between duplex-forming segments of the oligonucleotides on complexes' shape and number of subunits were compared and systematized for RNA/DNA, DNA/DNA, and RNA/RNA assemblies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
The thermodynamics of interactions between Cas12a, RNA, and DNA are important to understanding the molecular mechanisms governing CRISPR-Cas12a's specificity and function. In this study, we employed isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations to investigate the binding properties and energetic contributions of Cas12a-crRNA complexes with single-stranded (ssDNA) and double-stranded (dsDNA) DNA substrates. ITC analyses revealed significant thermal effects during the interaction of Cas12a-crRNA with ssDNA but no detectable effects with dsDNA.
View Article and Find Full Text PDFNew phosphate-modified nucleic acid derivatives are of great significance in basic research and biomedical applications. We have recently developed a new class of phosphoramide benzoazole oligonucleotides (PABAOs). In this work, th properties of N-benzoxazole oligodeoxyribonucleotides have been thoroughly examined.
View Article and Find Full Text PDFThis review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties.
View Article and Find Full Text PDFPulsed electron-electron double resonance (PELDOR) spectroscopy is a powerful method for determining nucleic acid (NA) structure and conformational dynamics. PELDOR with molecular dynamics (MD) simulations opens up unique possibilities for defining the conformational ensembles of flexible, three-dimensional, self-assembled complexes of NA. Understanding the diversity and structure of these complexes is vital for uncovering matrix and regulative biological processes in the human body and artificially influencing them for therapeutic purposes.
View Article and Find Full Text PDFNon-heme dioxygenases of the AlkB family hold a unique position among enzymes that repair alkyl lesions in nucleic acids. These enzymes activate the Fe(II) ion and molecular oxygen through the coupled decarboxylation of the 2-oxoglutarate co-substrate to subsequently oxidize the substrate. ALKBH3 is a human homolog of AlkB, which displays a specific activity toward N1-methyladenine and N3-methylcytosine bases in single-stranded DNA.
View Article and Find Full Text PDFDetection of the Kirsten rat sarcoma gene () mutational status is an important factor for the treatment of various malignancies. The most common -activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection.
View Article and Find Full Text PDFNew tool development for various nucleic acid applications is an essential task in RNA nanotechnology. Here, we determined the ability of self-limited complex formation by a pair of oligoribonucleotides carrying two pairwise complementary blocks connected by a linker of different lengths in each chain. The complexes were analyzed using UV melting, gel shift assay analysis, and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFIn this work, we for the first time conducted a detailed study on the structure, dynamics, and hybridization properties of N-benzimidazole group-bearing phosphoramide benzoazole oligonucleotides (PABAOs) that we developed recently. By circular dichroism we established that the introduction of the modifications does not disrupt the B conformation of the DNA double helix. The formation of complexes is approximated by a two-state model.
View Article and Find Full Text PDFThe dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations.
View Article and Find Full Text PDFGenome compaction is one of the important subject areas for understanding the mechanisms regulating genes' expression and DNA replication and repair. The basic unit of DNA compaction in the eukaryotic cell is the nucleosome. The main chromatin proteins responsible for DNA compaction have already been identified, but the regulation of chromatin architecture is still extensively studied.
View Article and Find Full Text PDFReplication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff.
View Article and Find Full Text PDFPhosphoryl guanidine (PG) is the novel uncharged modification of internucleotide phosphates of oligonucleotides. Incorporating PG modification into PCR primers leads to increased discrimination between wild-type and mutated DNA, providing extraordinary detection limits in an allele-specific real-time polymerase chain reaction (AS-PCR). Herein, we used PG-modification to improve the specificity of AS primers with unfavorable Pyr/Pur primer's 3'-end mismatch in the template/primer complex.
View Article and Find Full Text PDFIn this work, we present new oligonucleotide derivatives containing inter-nucleotide -benzimidazole, -benzoxazole, -benzothiazole, and 1,3-dimethyl--benzimidazole (benzoazoles) phosphoramide groups. These modifications were introduced via the Staudinger reaction with appropriate azides during standard automated solid-phase oligonucleotide synthesis. The principal structural difference between the new azido modifiers and those already known is that they are bulk heterocyclic structures, similar to purine nucleoside bases.
View Article and Find Full Text PDFGenome-editing systems, being some of the key tools of molecular biologists, represent a reasonable hope for progress in the field of personalized medicine. A major problem with such systems is their nonideal accuracy and insufficient selectivity. The selectivity of CRISPR-Cas9 systems can be improved in several ways.
View Article and Find Full Text PDFMost processes of the recognition and formation of specific complexes in living systems begin with collisions in solutions or quasi-solutions. Then, the thermodynamic regulation of complex formation and fine tuning of complexes come into play. Precise regulation is very important in all cellular processes, including genome editing using the CRISPR-Cas9 tool.
View Article and Find Full Text PDFEfficient protocols were developed for the synthesis of a new compounds - nucleoside 5'-α-iminophosphates using the Staudinger reaction. These substances are alpha-phosphate mimetic nucleotide in which an oxygen atom is replaced by a corresponding imino (=N-R)-group. Various 5'-iminomonophosphates of nucleosides were obtained.
View Article and Find Full Text PDFThe development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2021
Phosphoryl guanidine oligonucleotides (PGOs) are promising uncharged analogs of nucleic acids and are used in a variety of applications. The importance of hydration is frequently ignored during the design of modified nucleic acid probes. Such hydrophobic modifications (phosphoryl guanidine) are expected to have a significant impact on the structure and thermal stability of the affected oligo with complementary nucleic acids.
View Article and Find Full Text PDFPhosphoryl guanidine oligonucleotides (PGOs) are promising tools for biological research and development of biosensors and therapeutics. We performed structural and hybridization analyses of octa-, deca-, and dodecamers with all phosphate residues modified by 1,3-dimethylimidazolidine-2-imine moieties. Similarity of the B-form double helix between native and modified duplexes was noted.
View Article and Find Full Text PDFOligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, the -dodecaborate anion represents a high-boron-containing residue with remarkable chemical stability and low toxicity, and is suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of -dodecaborate attached to the 5'-, 3'-, or both terminal positions of DNA, RNA, 2'-O-Me RNA, and 2'-F-Py RNA oligomers.
View Article and Find Full Text PDFEstablishing the Kirsten rat sarcoma ) mutational status is essential in terms of managing patients with various types of cancer. Allele-specific real-time polymerase chain reaction (AS-PCR) is a widely used method for somatic mutations detection. To improve the limited sensitivity and specificity, several blocking methods have been introduced in AS-PCR to block the amplification of wild-type templates.
View Article and Find Full Text PDFPotent knockdown of pathogenic RNA in vivo is an urgent health need unmet by both small-molecule and biologic drugs. 'Smart' supramolecular assembly of catalysts offers precise recognition and potent destruction of targeted RNA, hitherto not found in nature. Peptidyl-oligonucleotide ribonucleases are here chemically engineered to create and attack bulge-loop regions upon hybridization to target RNA.
View Article and Find Full Text PDFBiosensors that rely on aptamers as analyte-recognizing elements (also known as aptasensors) are gaining in popularity during recent years for analytical and biomedical applications. Among them, colorimetric ELISA-like systems seem very promising for biomarker detection in medical diagnostics. For their development, one should thoroughly consider the characteristics of the aptamers, with a particular focus on the secondary structure.
View Article and Find Full Text PDFWe report a universal straightforward strategy for the chemical synthesis of modified oligoribonucleotides containing functional groups of different structures at the 2' position of ribose. The on-column synthetic concept is based on the incorporation of two types of commercial nucleotide phosphoramidites containing orthogonal 2'--protecting groups, namely 2'--thiomorpholine-carbothioate (TC, as "permanent") and 2'---butyl(dimethyl)silyl (BDMS, as "temporary"), to RNA during solid-phase synthesis. Subsequently, the support-bound RNA undergoes selective deprotection and follows postsynthetic 2' functionalization of the naked hydroxyl group.
View Article and Find Full Text PDF