ACS Appl Mater Interfaces
June 2015
Highly sensitive and fast photodetector devices with CdSe quantum nanowires as active elements have been developed exploiting the advantages of electro- and wet-chemical routes. Bismuth nanoparticles electrochemically synthesized directly onto interdigitating platinum electrodes serve as catalysts in the following solution-liquid-solid synthesis of quantum nanowires directly on immersed substrates under mild conditions at low temperature. This fast and simple preparation process leads to a photodetector device with a film of nanowires of limited thickness bridging the electrode gaps, in which a high fraction of individual nanowires are electrically contacted and can be exposed to light at the same time.
View Article and Find Full Text PDFSemiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters.
View Article and Find Full Text PDFWe present the full thermoelectric characterization of nanostructured bulk PbTe and PbTe-PbSe samples fabricated from colloidal core-shell nanoparticles followed by spark plasma sintering. An unusually large thermopower is found in both materials, and the possibility of energy filtering as opposed to grain boundary scattering as an explanation is discussed. A decreased Debye temperature and an increased molar specific heat are in accordance with recent predictions for nanostructured materials.
View Article and Find Full Text PDF