Proc Natl Acad Sci U S A
June 2019
Since the 1980s there has been a drive toward personalized targeted therapy for cancer. "Targeted cancer therapy" originally focused on inhibiting essential tumor survival factors, primarily protein tyrosine kinases. The complexity and rapid mutability of tumors, however, enable them to develop resistance to tyrosine kinase inhibitors (TKIs), even when these are multitargeted or applied in combination.
View Article and Find Full Text PDFThe small-molecule drug NT157 has demonstrated promising efficacy in preclinical models of a number of different cancer types, reflecting activity against both cancer cells and the tumor microenvironment. Two known mechanisms of action are degradation of insulin receptor substrates (IRS)-1/2 and reduced Stat3 activation, although it is possible that others exist. To interrogate the effects of this drug on cell signaling pathways in an unbiased manner, we have undertaken mass spectrometry-based global tyrosine phosphorylation profiling of NT157-treated A375 melanoma cells.
View Article and Find Full Text PDFThere is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC.
View Article and Find Full Text PDFSuperantigens (SAgs) are extremely potent bacterial toxins, which evoke a virulent immune response, inducing nonspecific T-cell proliferation, rapid cytokine release, and lethal toxic shock, for which there is no effective treatment. We previously developed a small molecule, S101, which potently inhibits proliferating T cells. In a severe mouse model of toxic shock, a single injection of S101 given together with superantigen challenge rescued 100% of the mice.
View Article and Find Full Text PDFThe treatment of metastatic androgen-resistant prostate cancer remains a challenge. We describe a protein vector that selectively delivers synthetic dsRNA, polyinosinic/polycytidylic acid (polyIC), to prostate tumors by targeting prostate specific membrane antigen (PSMA), which is overexpressed on the surface of prostate cancer cells.The chimeric protein is built from the double stranded RNA (dsRNA) binding domain of PKR tethered to a single chain anti-PSMA antibody.
View Article and Find Full Text PDFSelective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety.
View Article and Find Full Text PDFThe development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells.
View Article and Find Full Text PDFInsulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC.
View Article and Find Full Text PDFIn the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades.
View Article and Find Full Text PDFThe delivery of nucleic acids into cells is an attractive approach for cancer therapy. Polyethylenimine (PEI) is among the most efficient nonviral carriers. Recent studies have demonstrated that PEI can be conjugated to targeting ligands, such as epidermal growth factor (EGF) and transferrin (Schaffert et al.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) undergoes a conformational change in response to ligand binding. The ligand-induced changes in cell surface aggregation and mobility have a profound effect on the function of all the family members. Ligand also activates the EGFR intracellular kinase, stimulating proliferation and cell survival.
View Article and Find Full Text PDFA series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.
View Article and Find Full Text PDFInsulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from insulin-like growth factor 1 receptor (IGF-IR), insulin receptor (IR), and other oncoproteins. IRS1 plays a central role in cancer cell proliferation, its expression is increased in many human malignancies, and its upregulation mediates resistance to anticancer drugs. IRS2 is associated with cancer cell motility and metastasis.
View Article and Find Full Text PDFThe understanding that the immune system plays a dual role in cancer progression has led to the recent development of targeted immunotherapies. These treatments, which aim to harness the immune system against cancer, include monoclonal antibodies, immune adjuvants, cell-based therapy and vaccines. Although numerous immune-targeted treatment modalities have entered the clinic, most have shown limited efficacy.
View Article and Find Full Text PDFTransformation is a complex process, involving many changes in the cell. In this work, we investigated the transcriptional changes that arose during the development of squamous cell carcinoma (SCC) in mice. Using microarray analysis, we looked at gene expression during different stages in cancer progression in 31 mice.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
July 2013
With the manufacture of imatinib, researchers introduced tyrosine kinase inhibitors (TKIs) into the clinical setting in 2000 to treat cancers; approximately fifteen other TKIs soon followed. Imatinib remains the most successful agent, whereas all the others have had modest effects on the cancers that they target. The current challenge is to identify the agents that need to be combined with TKIs to maximize their efficacy.
View Article and Find Full Text PDFCancer researchers have been looking for ways to harness the immune system and to reinstate immune surveillance, to kill cancer cells without collateral damage. Here we scan current approaches to targeting the immune system against cancer, and emphasize our own approach. We are using chemical vectors attached to a specific ligand, to introduce synthetic dsRNA, polyinosine/cytosine (polyIC), into tumors.
View Article and Find Full Text PDFComputers are organized into hardware and software. Using a theoretical approach to identify patterns in gene expression in a variety of species, organs, and cell types, we found that biological systems similarly are comprised of a relatively unchanging hardware-like gene pattern. Orthogonal patterns of software-like transcripts vary greatly, even among tumors of the same type from different individuals.
View Article and Find Full Text PDFPhage display has identified the dodecapeptide YHWYGYTPQNVI (GE11) as a ligand that binds to the epidermal growth factor receptor (EGFR) but does not activate the receptor. Here, we compare the EGFR binding affinities of GE11, EGF, and their polyethyleneimine-polyethyleneglycol (PEI-PEG) conjugates. We found that although GE11 by itself does not exhibit measurable affinity to the EGFR, tethering it to PEI-PEG increases its affinity markedly, and complex formation with polyinosine/cytosine (polyIC) further enhances the affinity to the submicromolar range.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) govern nearly all processes in living cells. Peptides play an important role in studying PPIs. Peptides carrying photoaffinity labels that covalently bind the interacting protein can be used to obtain more accurate information regarding PPIs.
View Article and Find Full Text PDFWith the goal of developing small molecules as novel regulators of signal transduction and apoptosis, a series of tyrphostin-like compounds were synthesized and screened for their activity against MM-1 (multiple myeloma) cells and other cell lines representing this malignancy. Synthesis was completed in solution-phase initially and then adopted to solid-phase for generating a more diverse set of compounds. A positive correlation was noted between compounds capable of inducing apoptosis and their modulation of protein ubiquitination.
View Article and Find Full Text PDFAG490 is a tyrosine kinase inhibitor with activity against Jak2 and apoptotic activity in specific leukemias. Due to its weak kinase inhibitory activity and poor pharmacology, we conducted a cell-based screen for derivatives with improved Jak2 inhibition and activity in animals. Two hits emerged from an initial small chemical library screen, and more detailed structure-activity relationship studies led to the development of WP1130 with 50-fold greater activity in suppressing Jak2-dependent cytokine signaling than AG490.
View Article and Find Full Text PDFLinear peptides suffer from poor pharmacokinetic and pharmacodynamic properties. Peptidomimetics are designed to overcome these pharmacological drawbacks while maintaining the biological effects of the parent peptides. Aza-peptides, in which an alpha carbon is replaced with nitrogen, are promising peptidomimetic analogs; however, little is known about the stability of these analogs toward enzymatic degradation.
View Article and Find Full Text PDFNucleic acid based therapeutics offer the possibility of tailor-made treatment of malignant diseases. For recurrent glioblastoma multiforme (GBM), the most aggressive type of brain tumor, no accepted treatment exists, making therapeutically active nucleic acids a viable option. In this review, current preclinical and clinical studies harnessing the potential of antitumoral nucleic acids for GBM treatment will be considered.
View Article and Find Full Text PDFElevated levels of activated protein kinase B (PKB/Akt) have been detected in many types of cancer. Substrate-based peptide inhibitors have the advantage of selectivity due to their extensive interactions with the kinase-specific substrate binding site but often lack necessary pharmacological properties. Chemical modifications of potent peptide inhibitors, such as cyclization, may overcome these drawbacks while maintaining potency.
View Article and Find Full Text PDF