Publications by authors named "Alexander Lagatsky"

In this Letter, we report on the development of an ultra-compact single-frequency Ti:sapphire laser under direct diode pumping. Single-longitudinal-mode operation is realized from a miniature plane-parallel resonator using a volume Bragg grating as an output coupler. InGaN laser diodes operating at around 470 nm and 490 nm with a combined power of 6.

View Article and Find Full Text PDF

We report a broadly wavelength-tunable femtosecond diode-pumped Ti:sapphire laser, passively mode-locked using both semiconductor saturable absorber mirror (SESAM) and Kerr-lens mode-locking (KLM) techniques. Using two pump laser diodes (operating at 450 nm), an average output power as high as 433 mW is generated during mode-locking with the SESAM. A tunability range of 37 nm (788-825 nm) was achieved with the shortest pulse duration of 62 fs at 812 nm.

View Article and Find Full Text PDF

We demonstrate passively mode-locked Yb(3+)-doped glass waveguide lasers in a quasi-monolithic configuration with a maximum pulse repetition frequency up to 15.2 GHz. A semiconductor saturable absorber mirror (SESAM) is used to achieve stable mode-locking around 1050 nm with pulse durations as short as 811 fs and an average power up to 27 mW.

View Article and Find Full Text PDF

Femtosecond mode locking of a Tm-doped Lu2O3 ceramic laser is reported. Transform-limited pulses as short as 180 fs are generated at 2076 nm with an average output power of 400 mW and a pulse repetition frequency of 121.2 MHz.

View Article and Find Full Text PDF

We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.

View Article and Find Full Text PDF

In this work we present a review and discussion on the enhancement of femtosecond (fs) lasers for use within biophotonics with a particular focus on their use in optical transfection techniques. We describe the broad range of source options now available for the generation of femtosecond pulses before briefly reviewing the application of fs laser in optical transfection studies. We show that major performance enhancements may be obtained by optimising the spatial and temporal performance of the laser source before considering possible future directions in this field.

View Article and Find Full Text PDF

We report a highly efficient diode-pumped femtosecond Yb:KYW laser with a compact three-element resonator. Near-transform-limited pulses of 107fs duration at a centre wavelength of 1056nm are produced at a pulse repetition frequency of 294MHz by utilising softaperture Kerr-lens mode locking. The femtosecond operation had a modelocking threshold at a pump power of 250mW and the laser was tunable from 1042nm to 1075nm.

View Article and Find Full Text PDF