Watershed integrity, the capacity of a watershed to support and maintain ecological processes essential to the sustainability of services provided to society, can be influenced by a range of landscape and in-stream factors. Ecological response data from four intensively monitored case study watersheds exhibiting a range of environmental conditions and landscape characteristics across the United States were used to evaluate the performance of a national level Index of Watershed Integrity (IWI) at regional and local watershed scales. Using Pearson's correlation coefficient (), and Spearman's rank correlation coefficient ( ), response variables displayed highly significant relationships and were significantly correlated with IWI and ICI (Index of Catchment Integrity) values at all watersheds.
View Article and Find Full Text PDFUnderstanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched prairie-pothole wetlands.
View Article and Find Full Text PDFBackground: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.
View Article and Find Full Text PDF