As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs.
View Article and Find Full Text PDFSequencing DNA fragments associated with proteins following in vivo cross-linking with formaldehyde (known as ChIP-seq) has been used extensively to describe the distribution of proteins across genomes. It is not widely appreciated that this method merely estimates a protein's distribution and cannot reveal changes in occupancy between samples. To do this, we tagged with the same epitope orthologous proteins in Saccharomyces cerevisiae and Candida glabrata, whose sequences have diverged to a degree that most DNA fragments longer than 50 bp are unique to just one species.
View Article and Find Full Text PDFCohesin's Smc1, Smc3, and kleisin subunits create a tripartite ring within which sister DNAs are entrapped. Evidence suggests that DNA enters through a gate created by transient dissociation of the Smc1/3 interface. Release at the onset of anaphase is triggered by proteolytic cleavage of kleisin.
View Article and Find Full Text PDFCohesin's structural maintenance of chromosome 1 (Smc1) and Smc3 are rod-shaped proteins with 50-nm long intra-molecular coiled-coil arms with a heterodimerization domain at one end and an ABC-like nucleotide-binding domain (NBD) at the other. Heterodimerization creates V-shaped molecules with a hinge at their centre. Inter-connection of NBDs by Scc1 creates a tripartite ring within which, it is proposed, sister DNAs are entrapped.
View Article and Find Full Text PDFBackground: The cohesin complex that mediates sister chromatid cohesion contains three core subunits: Smc1, Smc3, and Scc1. Heterotypic interactions between Smc1 and Smc3 dimerization domains create stable V-shaped Smc1/Smc3 heterodimers with a hinge at the center and nucleotide-binding domains (NBDs) at the ends of each arm. Interconnection of each NBD through their association with the N- and C-terminal domains of Scc1 creates a tripartite ring, within which sister DNAs are thought to be entrapped (the ring model).
View Article and Find Full Text PDFCohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion.
View Article and Find Full Text PDF